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Abstract. Existing flame image segmentation methods are generally defective, have
poor antinoise performance, and have a long computing time. This study proposes a
flame image segmentation method using the dynamic adaptation cuckoo search algorithm
based on the 2D maximum between-cluster variance to meet the real-time flame status
monitoring requirements of power boilers. With the 2D maximum between-cluster vari-
ance as the thresholding rule, the antinoise performance of the algorithm is enhanced.
The dynamic variance policy of differential evolution and the detection probability of dy-
namic changes were modified based on the update policy of cuckoo search (CS) algorithm,
thereby enhancing the local search of the algorithm, balancing the mining and develop-
ment of the algorithm, and reducing the segmentation time. Experimental data show that
the proposed method outperforms other flame image segmentation methods that are based
on particle swarm optimization and CS in terms of time and accuracy.
Keywords: Flame image segmentation, 2D maximum between-cluster variance, Cuckoo
search algorithm

1. Introduction. The image processing and recognition system is a key technology in
monitoring the state of the furnace flame, of which flame image segmentation is a criti-
cal step that separates the flame from the background and directly affects the accuracy
of flame status recognition. Various thresholding methods have been applied to image
segmentation. Among them, the bionics algorithm is a hot direction.

In 2009, Professor Yang from the University of Cambridge and Deb proposed the cuckoo
search (CS) algorithm [1], which could effectively solve the optimization problem by sim-
ulating the parasitic cuckoo brood. Given its simple structure, less control parameters,
and strong search ability, the CS algorithm is considered more potent and efficient in
many optimization problems than the GA and PSO algorithms [2,3]. However, the CS
algorithm has a weak local search ability and slow convergence at the later stage. Sri-
vastava et al. [4] introduced the tabu search (TS) algorithm while using Lévy flights for
local search, by which the current optimum solution was stored in the queue for TS to
avoid local optimization. Li and Yin [5] introduced orthogonal learning mechanisms that
followed the preferred random walk to improve the local search algorithm; Li and Yin [6]
introduced the modified adaptive CS to balance the mining and development of the CS
algorithm. The aforementioned improvements have improved the performance of the CS
algorithm, but none of them have been proposed specifically for flame images. This study
proposes a 2D Otsu-based dynamic variation cuckoo segmentation (DACS) for flame im-
ages according to the characteristics of furnace flame images. This algorithm demonstrates
two improvements in the following aspects: (1) using the 2D maximum between-cluster
variance as the fitness function, the antinoise performance of the algorithm is enhanced;
and (2) according to differential evolution (DE), the update policy of the CS algorithm
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is replaced by the dynamic variance policy based on the current optimal and suboptimal
values and on the detection probability of dynamic changes pa. The nests are updated
or eliminated by random walk to enhance the local search and convergence rate of the
algorithm and to balance its mining and development. The organizational structure of
the article is as follows: Chapter 2 introduces the 2D maximum between-cluster variance,
Chapter 3 introduces the dynamic adaptation cuckoo search (DACS) algorithm, Chapter
4 provides the experimental results and analysis of the algorithm proposed, and finally,
Chapter 5 provides the conclusions.

2. 2D Maximum Between-Cluster Variance. The 2D maximum between-cluster
variance does not only use the grayscale image pixel but also takes advantage of between-
pixel space-related information, so it has strong antinoise performance. Figure 1 shows
the 2D histogram of the grayscale–neighborhood average.

Figure 1. 2D histogram of the grayscale–neighborhood average

In Figure 1, the horizontal coordinate denotes the image grayscale, whereas the longi-
tudinal coordinate denotes the neighborhood average. We assumed that Pij is the joint
probability density in the 2D histogram with the grayscale and neighborhood average de-
fined as i and j, respectively. Pij is defined as Pij =

Rij

M×N
, where (i, j = 0, 1, . . . , L − 1),

0 ≤ Pij ≤ 1
L−1∑
i=0

L−1∑
j=0

pij = 1, and Rij represents the occurrence of the binary system (i,

j). Using the threshold (s, t), the image is divided into four rectangular regions, namely,
Areas 1, 2, 3, and 4, of which Areas 1 and 2 represent the background and target areas,
respectively, whereas Areas 3 and 4 represent the edge and noise of the image, respec-
tively. Areas 3 and 4 are generally ignored in calculating the 2D maximum between-cluster
variance. The probability for any pixel to be assigned to Areas 1 or 2 is computed as
follows:

P1 =
s∑

i=0

t∑
j=0

pij and P2 =
L−1∑

i=s+1

L−1∑
j=t+1

pij (1)

Definition 2.1. The 2D maximum between-cluster variance is defined as follows:

φ(s + t) = P1

[
(µ0x − µzx)

2 − (µ0y − µzy)
2
]
+ P2

[
(µ1x − µzx)

2 − (µ1y − µzy)
2
]

(2)

where µ0x, µ0y, µ1x, µ1y, µzx, and µzy denote the average grayscale of Area 1, the neigh-
borhood average of Area 2, the average grayscale of Area 2, the neighborhood average of
the entire image, the average grayscale of the entire image, and the neighborhood average,
respectively.
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3. Dynamic Adaptation Cuckoo Search (DACS) Algorithm.

3.1. CS algorithm. The CS algorithm was discovered in studies on the behaviors of
cuckoo species that randomly lay their eggs on the nests of other birds. The search
process of this algorithm mimics the process of cuckoos finding a nest to lay their eggs.

Definition 3.1. The basic flow of the CS algorithm is shown in Algorithm 1.
Algorithm 1.

Begin
Initial population: n host nests Xi (i = 1, 2, . . ., n);
Calculating the fitness: Fi (i = 1, 2, . . ., n);
While (the stop condition is unsatisfied)

Using Levy flight, generate a new solution Xi;
Calculate the fitness Fi of the new solution Xi;
Select a candidate solution Xj;
If (Fi > Fj)
Replace the candidate with a new solution;
End
Abandon the unsatisfactory solution according to the detection probability pa;
Replace the abandoned solution with a new one generated by the preferred random

walk;
Retain the optimal solution.

End
End

3.2. Dynamic variance policy. DE mainly involves three operations, namely, varia-
tion, crossing, and selection [7]. Variation [8] is the main way for DE to produce offspring
individuals.

Considering the first policy update, the CS algorithm adopts Levy’s random walk.
Given that this method entirely depends on the random walk strategy, its convergence rate
and accuracy cannot be easily guaranteed. When a flame image is processed by the rules
for Otsu-threshold-based segmentation, large single peaks of the 2D maximum between-
cluster variance appear in most of the flame images and approach the largest single peak
from one generation to another generation, thereby accelerating the convergence rate and
increasing the accuracy of the algorithm. Based on the update approach with the optimal
and suboptimal values that are proposed in variation, the solution ensures that the high
probability changes will appear in the vicinity of the nearest solution from the highest
peak and that the late convergence rate of the algorithm will not decrease any further. The
scale factor F is set to a greater value and decreases in each iteration, thereby ensuring
the better global search of the algorithm at the early stage and its strong long local search
at the late stage and balancing the two functions in the entire process of the algorithm,
as follows:

X t
i = X t

i + F (X t
best1 − X t

i ) and X t
i = X t

i + F (X t
best2 − X t

i ) (3)

In the CS algorithm, part of the solutions is eliminated by a fixed detection probability
pa and is updated based on the elimination. However, given that one cannot easily
determine if the elimination is excellent or poor, the elimination-based update cannot
further strengthen the local search or expand the global search of the algorithm. As
for the CS algorithm, after the population size is fixed, the balance between the global
random search and the local search will be dominated by pa. Therefore, setting a fixed
value to pa does not present an excellent method in the CS algorithm.

The solution is as follows. (1) Complement the first location update. Although the
first location update by the random walk based on the optimal and suboptimal values
can ensure the sound evolution of the solutions as the walk range is expanded by the
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scale factor, this update still has a poor search ability. Using the variation operator for
random walk, the search capability of the algorithm is further enhanced, thereby allowing
the algorithm to find the optimum solution within a short period, as follows:

X t
i = X t

r1 + F
(
X t

r2 − X t
r3

)
(4)

whereX t
r1, X t

r2, and X t
r3 represent three random solutions of the tth generation.

(2) Ensure that the algorithm has a strong global search capability at the early stage and
a better local search capability at the later stage. The detection probability of dynamic
changes pa quantitatively obtains the solutions that are eliminated at the early stage on
the high side and those at the late stage on the low side, as follows:

pa = 1.1 − exp
(
−(t/tmax)

0.6
)

(5)

Definition 3.2. The DACS algorithm is shown in Algorithm 2.
Algorithm 2.

Begin
Initial population: n host nests Xi (i = 1, 2, . . . , n);
Calculating the fitness: Fi (i = 1, 2, . . . , n);
While (the stop condition is unsatisfied)

Using the Formula (3), generate two new solutions Xi1, Xi2;
Calculate the fitness Fi1 and Fi2 of the new solutions;
If (Fi1 <= Fi2)

Fi1 = Fi2;
Xi1 = Xi2;

End
Select a candidate solution Xj;
If (Fi1 > Fj)
Replace the candidate with Xi1;
End
Abandon the unsatisfactory solution according to the detection probability pa;
Replace the abandoned solution with a new one generated by the Formula (4);
Retain the optimal solution.

End
End

4. Experimental Results and Analysis. To verify the flame image segmentation per-
formance of the DACS algorithm, the test environment for the simulation is set as follows:
The algorithm is implemented using Windows 7 Intel (R) Core i3-2348M CPU, 2.30 GHz,
4 G memory, and Microsoft VS2010 VC++ and opencv2.9.10.

4.1. Results of flame image segmentation. In this study, the flame images obtained
are used for the segmentation test by 2D Otsu, CS, PSO, and DACS to verify the per-
formance of the algorithms. Figure 2 shows the image segmentation results. In these
figures, (a) represents the original image, (b) represents the standard binary mask, and
(c), (d), (e), and (f) represent the results of image segmentation by 2D Otsu, PSO, CS,
and DACS, respectively.

Figure 2 shows that, unlike DACS, neither PSO nor CS can accurately segment the
flame image. Table 1 presents the time that each of the aforementioned algorithms spends
on segmenting the images (Figure 2). The 2D Otsu method can accurately segment the
image, but consumes much time. The experimental data show that the proposed method
can effectively segment the flame images.
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(a) Original image (b) Standard binary mask (c) 2D Otsu method (t = 65)

(d) PSO algorithm (t = 75) (e) CS algorithm (t = 55) (f) DACS algorithm (t = 65)

Figure 2. Image segmentation results

Table 1. Segmentation time of the image in Figure 2

2D Otsu method PSO CS DACS
CPU run time (ms) 30,144 1,907 1,548 1,073

Table 2. ME of the image in Figure 2

2D Otsu PSO CS DACS
ME 0.002034 0.036704 0.029852 0.002034

4.2. Image segmentation analysis. As the segmentation standard, the misclassifica-
tion error (ME) can directly reveal the proportion of background pixels that are misclas-
sified into the foreground region, calculated as follows:

ME = 1 −
∑

(Bo ∩ Bt) +
∑

(Fo ∩ Ft)∑
Bo +

∑
Fo

(6)

where Bo and Fo represent the background and standard binary masks (ground truth) in
the target area of the image, respectively, Bt and Ft represent the background region and
target area of the image after segmentation, respectively, ∩ denotes the crossing operation,
and Σ denotes the operation of counting the number of pixels in each part. We observe
artificial standard binary mask images in the actual segmentation and empirically show
that a better image segmentation leads to a larger intersection (target or background) of
the image before and after segmentation. Therefore, the ME value must be small. Table
2 shows the ME values of the images (Figure 2) by each of the aforementioned algorithms.
The 2D Otsu and DACS have the smallest ME values.
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4.3. Convergence analysis. Algorithm convergence is a basic indicator for measuring
algorithm performance. The number of iterations is set to 100, whereas the iteration
in each experiment is set to 30 times to analyze and compare the algorithm performance
further. Figures 3 and 4 show the convergence performances of CS and DACS, respectively.
CS is trapped into the local minima in the 15th to 20th iterations, but rapidly jumps out
later. However, the convergence rate of CS obviously slows down at the later stage, which
seriously affects its performance. Although DACS is trapped slightly longer than CS, its
convergence rate at the later stage is accelerated to some extent, thereby significantly
reducing the number of iterations.

Figure 3. Convergence of the CS

Figure 4. Convergence of the DACS

5. Conclusions. This study proposes a 2D Otsu DACS-based flame image segmentation
method according to the characteristics of furnace flame images. The antinoise perfor-
mance of the algorithm is improved using the 2D maximum between-cluster variance as
the thresholding segmentation rule. The update policy of CS is improved by the vari-
ation operation of DE, whereas its poor local search ability and local convergence rate
are improved based on the detection probability of dynamic changes. The experimental
data show that the proposed method achieves better image segmentation within a shorter
period at a higher convergence rate. In the future, we can try combining different bionics
algorithms, and may be able to get better results.
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