
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 10, October 2016 pp. 2149–2154

EFFICIENT PAGE COLORING FOR MULTI-THREADED PROGRAMS

Xiuhong Li and Gulila · Altenbek

Information Science and Engineering College
Xinjiang University

No. 666, Shengli Road, Urumq 830046, P. R. China
{ xjulxh; gla }@xju.edu.cn

Received March 2016; accepted June 2016

Abstract. Cache is introduced in modern processors to accelerate data accessing. How-
ever, it happens commonly that good locality data in cache are often evicted by poor local-
ity data, resulting into poor cache utility and degraded performance. This paper proposes
that the lock in multi-threaded programs naturally reveals the data locality information
which can be leveraged to achieve better page coloring and thus better cache utility. Ex-
perimental results show that our work can achieve an average speedup of 1.25X with only
ignorable overhead (less than 5%), showing great potential to accelerate multi-processing.
Keywords: Cache utility, Page coloring, Data locality, Multi-threaded programs, Lock

1. Introduction. Modern processors all introduce cache to accelerate data accessing
based on the principle of locality [1]. However, the data locality feature is only determined
by the runtime behaviors of upper applications and varies hugely in different applications
[2]. A common situation happens that some cache lines with high locality may be evicted
by others with low locality, resulting into poor cache utility and degraded performance
[3]. Better cache management strategy is thus desirable to improve cache utility.

Without any upper level (upper application) information, a common way to achieve
better cache utility is to try to assign neighboring pages to different cache sets, hoping
they have good locality and thus they will not conflict with each other in cache (we call
this method basic page coloring or open mapping [3], see details in Section 2). In order
to achieve better cache utility, there have been a lot of studies trying to get more infor-
mation from upper applications to guide cache management, which include off-line analy-
sis method [4], new-monitoring-hardware-based method [5], and memory-allocator-based
method [3]. These previous studies all fall short on some aspects. Off-line method and
new-hardware-method are not practical in most cases. Memory-allocator-based method
introduces considerable overhead when doing monitoring and analysis at on-line execution
[3] and some studies changed the memory allocation interface [6]. Overall, a high efficient
and transparent on-line method is needed to achieve better cache management.

This paper aims to achieve better cache management (better page coloring) for multi-
threaded programs. We conduct our work based on a key insight: multi-threaded pro-
grams offer very natural information which reveals its memory access pattern. When a
thread tries to hold a lock to access some shared data, it reveals that the programmers
assume this shared data may be accessed soon by other threads. Thus this shared data is
supposed to have good locality. We will show in this paper that this information is very
effective and is easy to get at runtime, introducing only ignorable overhead. Based on this
key insight, we have built our tool which contains a kernel patch and a runtime library
that offers lock operation interface and memory allocation interface. The lock operation
interface is the same with the pthread library to catch the lock information. The memory
allocation interface is the same with the libc library to achieve memory access monitoring.

2149



2150 X. LI AND G. ALTENBEK

The kernel patch manages the virtual-physical mapping to achieve better cache manage-
ment (page coloring) based on the information we get from the upper multi-threaded
applications. Any application can run with our tool without any modification. Exper-
iments show that our work achieves an average speedup of 1.25X. The on-line analysis
only introduces less than 5% overhead.

The rest of this paper is organized as follows. We introduce some background informa-
tion about cache management and page coloring in Section 2. The design and implemen-
tation details of our method are in Section 3. We conduct experiments in Section 4 and
conclude in Section 5.

2. Background Information about Page Coloring. Modern processor organizes ca-
che lines into several cache sets and uses physical address to manage cache and physical
memory. As shown in Figure 1, different addresses in physical memory are assigned to
different cache sets in cache. Based on the locality principle, all the cache lines in two
neighboring physical pages are assigned to different cache sets to avoid conflict in cache
and for this we say the two neighboring physical pages have different colors. For example,
in Figure 1 there are two colors (red and blue). All the red physical pages share the same
group of cache set and all the blue physical pages share the other same group of cache
set. Thus any two cache lines in different colored physical pages would never conflict with
each other in cache.

The cache and physical memory management logic introduced above is set fixed in hard-
ware and cannot be modified by software. However, software runs with virtual memory
address instead of physical memory address. It is the operating system’s task to manage
the page table to map virtual pages to physical pages. Here we call this mapping process

Figure 1. Cache management and page coloring

Figure 2. Page coloring with virtual-physical mapping



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.10, 2016 2151

coloring. For example, in Figure 2(a), the second virtual page can be mapped to the sec-
ond physical page and thus it is colored blue. Also in Figure 2(b), the second virtual page
can be mapped to the third physical page and thus it is colored red. Operating system
determines the color of virtual pages and thus determines which group of cache set the
virtual page uses. Thus if we find the two neighboring pages have good data locality, it is
better to give the two neighboring virtual pages different colors as shown in Figure 2(a).
On the contrary, Figure 2(b) shows a bad case we want to avoid for good locality data.

3. Efficient Page Coloring for Multi-Threaded Programs. As discussed in Sec-
tion 2, the key problem to achieve better cache management is to try to discover the
data locality information in upper applications and use the information to guide page
mapping in operating system. Our method for this includes a kernel patch which man-
ages the virtual-physical mapping and a runtime library which discovers the data locality
information of upper applications.

3.1. Locks in multi-threaded programs. Most multi-threaded programs rely on lock
to synchronize accesses to shared data. The implicit information of lock is that if a thread
holds a lock to access any shared data, this part of data is likely to be accessed soon by
other threads. This is very natural information that the lock reveals. In most cases, the
data in the inner-most lock sets is most intensively accessed and thus this part of data
has good locality.

In order to catch the lock information, we offer a library that provides pthread mutex lo-
ck interface just the same with that in pthread lib. Thus upper applications need no
modification to run with our library. In our implementation of pthread mutex lock, we
just do some record and analysis and then call the real pthread mutex lock.

Figure 3. Implementation of lock

Figure 3 shows our implementation of lock in our library. Firstly the thread allo-
cates three objects a, b, c and then requires a lock to access them. At the lock time
(pthread mutex lock), we increase a variable i am in lock to indicate that we are now
in lock set. For nested lock set, this variable also records the number of nested layers.
Then after holding the lock, the thread begins accessing the shared data. There are two
situations when accessing the shared data.

1. If the virtual page which contains the shared data has just been allocated and has
never been accessed before, then a page fault is triggered and the operating system
should allocate a new physical page and construct the virtual-physical mapping.
This situation is what we are mainly looking for to achieve efficient page coloring.
The operating system will check whether we are in a lock set (check the variable
i am in lock). If so, the operating system will try to allocate different colored physical



2152 X. LI AND G. ALTENBEK

page for all the page faults triggered in the lock set. Thus we give all the shared data
different colors in a lock set and they would not conflict with each other in cache. We
argue that it is a common situation in multi-threaded programs that the first time
of accessing a new allocated virtual page happens in lock sets. This is because new
allocated virtual pages are allocated through heap (malloc) and thus the objects in
them are shared among threads. Accessing them requires holding locks. Achieving
page coloring for this situation would only introduce ignorable overhead because
this is the first time of accessing one virtual page and allocating a new physical
page. We do not have to do remapping for the virtual page which has already been
mapped to a physical page. Doing remapping is expensive (it requires allocating a
new physical page, copying the content of the old physical page to the new page,
and then modifying the page table to redirect the mapping).

2. The virtual pages that contain shared data have already been mapped to physical
pages. Accessing them would not cause any page faults. In this situation, we hope
that all the virtual pages accessed in this lock set have been given different colors
thus they do not conflict with each other in cache. The virtual-physical mapping
relationship for these virtual pages may be set up in different lock sets thus some of
them may have the same color. Normally we just ignore this situation. However,
under some intense situations, it is better that we double-check it. We regard the
nested lock sets as intense situation. The more layers of the lock set nests, the
more intensive accesses the shared data will serve. Thus as Figure 3 shows, we set a
threshold to test the number of nested layers. If it reaches the threshold (currently
we set it to be 2, in accordance to our experimental experience that nested layers
larger than 2 often show intense situations), we will write-protect all the shared data.
Accessing the shared data in the lock set will cause page fault so we have chance to
check if all the virtual pages accessed in this lock set have different colors. If we find
that two virtual pages have the same color, we will do remapping. As introduced
before, doing remapping is expensive and thus we just do it when the shared data
are serving intensive accesses. Moreover, we have found that in most multi-threaded
programs nested lock sets are in loops, which are definitely intensive cases.

3.2. Memory allocator. We also provide dynamic memory allocation interface (malloc)
in our library. When serving malloc, we just record all the virtual pages that are visible
to programmers (the virtual pages that contain objects returned from malloc) and then
call into the real malloc in libc. Thus when we want to write-protect all the shared virtual
pages (do protect shared data), we can just use mprotect to achieve this. Accessing these
virtual pages will cause page faults and thus by doing this we are able to check the colors
of these virtual pages.

4. Experimental Results. In this paper we propose an efficient way to get the data
locality feature in multi-threaded programs and to achieve better page coloring and better
cache utility. In this section we will mainly show the benefit and overhead of our work.
Also we will compare our work with the state-of-the-art work NightWatch [3], a memory-
allocator-based page coloring tool.

We conduct our experiment on a platform with Intel processor E3 e1230 v3. It has 8
MB of last level cache and 256 colors. We test our work on multi-threaded benchmarks
selected from SPLASH-2 [6] and PARSEC [7] benchmark suite with default input.

Figure 4 shows the experimental results. Firstly, Figure 4(a) shows the speedup of
our work (lock-based) and previous state-of-the-art work (NightWatch) over the baseline
(normal execution). We can see both our work (lock-based) and the previous work (Night-
Watch) achieve obvious speedup. Our work behaves much better than NightWatch for
the benchmark ocean, water, lu, and fft. This is because these benchmarks only allocate



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.10, 2016 2153

Figure 4. Experimental results

a small number of objects (less than 10) at the beginning of program and then make no
memory allocations at runtime. NightWatch relies on memory allocation information to
gain benefit and thus it behaves not so well. For the benchmark dedup and swaptions, they
allocate a lot of objects and thus they give NightWatch abundant information. Night-
Watch behaves better than our work on these two benchmarks. Overall, our work relies
on the lock information and achieves 1.25X speedup averagely.

To test the overhead, we just run our work and NightWatch with monitoring and anal-
ysis process but we do not do any page coloring based on that analysis. Figure 4(b) shows
the overhead of our work (lock-based) and previous work (NightWatch) over baseline. We
can see in all benchmarks our work introduces less overhead than NightWatch. This is
because the information from lock is very natural and easy to get. Overall, our work
introduces less than 5% overhead averagely.

Lastly, our work is for multi-threaded programs while NightWatch is more general.
However, we want to point out that our work is compatible with NightWatch and can be
combined with it to achieve further benefit.

5. Conclusions. This paper introduces an efficient page coloring mechanism which lever-
ages the lock in multi-threaded programs to gain the data locality information. With the
upper level data locality information, we could achieve better page coloring and bet-
ter cache utility. Experiments show that our work could achieve an average speedup of



2154 X. LI AND G. ALTENBEK

1.25X, introducing only less than 5% overhead. Future work includes adopting our work
for transactional-interface-based multi-threaded programs.

REFERENCES

[1] M. E. Wolf and M. S. Lam, A data locality optimizing algorithm, ACM Sigplan Notices, vol.26, no.6,
1991.

[2] X. N. Ding, K. B. Wang and X. D. Zhang, ULCC: A user-level facility for optimizing shared cache
performance on multicores, ACM Sigplan Notices, vol.46, no.8, 2011.

[3] R. T. Guo et al., NightWatch: Integrating lightweight and transparent cache pollution control into
dynamic memory allocation systems, 2015 USENIX Annual Technical Conference, Santa Clara, CA,
2015.

[4] D. L. Schuff, M. Kulkarni and V. S. Pai, Accelerating multicore reuse distance analysis with sam-
pling and parallelization, Proc. of the 19th International Conference on Parallel Architectures and
Compilation Techniques, 2010.

[5] D. K. Tam et al., RapidMRC: Approximating L2 miss rate curves on commodity systems for online
optimizations, ACM Sigarch Computer Architecture News, vol.37, no.1, 2009.

[6] C. Bienia, S. Kumar and K. Li, PARSEC vs. SPLASH-2: A quantitative comparison of two mul-
tithreaded benchmark suites on chip-multiprocessors, IEEE International Symposium on Workload
Characterization, 2008.

[7] C. Bienia et al., The PARSEC benchmark suite: Characterization and architectural implications,
Proc. of the 17th International Conference on Parallel Architectures and Compilation Techniques,
2008.


