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Abstract. In real imaging systems, boundary conditions (BCs) are generally non-
periodic and unknown. However, most studies adopt a periodic BC to efficiently solve
image recovery problems. The fact that ring artifacts will inevitably appear in recovered
images under a periodic BC cannot be disregarded. To handle this tricky problem, this
paper presents a novel image recovery approach under an unknown BC. The approach
focuses on addressing the image recovery problem expressed as a regularized optimization
problem with a non-quadratic edge-preserving and noise-suppressing regularizer. The blur
is cast as the product of a mask matrix with a circulant matrix. Thus, the operations
between matrices cannot be implemented using fast Fourier transform, which requires it-
erative solvers. To deal with this difficult issue, double variable splitting is employed to
convert the original image recovery problem into its equivalent constrained form, which
is then decomposed into a series of subproblems by the alternating optimization. Al-
ternately computing these subproblems without inner iterations obtains the closed-form
solution of the original image recovery problem. In the simulation experiment, two ob-
served benchmark images under an unknown BC with uniform blur are recovered to vali-
date the effectiveness of the presented approach. Comparisons of the recoveries, improved
signal-to-noise ratio, and speed demonstrate the superior performance of the presented
approach.
Keywords: Image recovery, Unknown BC, Observation model, Double variable split-
tings, Alternating optimization

1. Introduction. Image degradation can be represented by the linear system y = Kx+n,
where x ∈ RN denotes the vector form of the latent sharp image of size m × n, y ∈ RM

represents the vector form of the observed image of size l × p, K ∈ RM×N is a linear
operator, and n ∈ RM is an additive Gaussian noise. Given that an observed image
is created by the convolution between a sharp image and a point spread function, the
observed image y not only depends on the pixels in the domain of the sharp image x, but
also on those outside the domain of x. Thus, the assumptions, which are usually called
boundary conditions (BCs), should be made on the pixels out of the domain of sharp
images. Among the various BCs, periodic BC [1] is probably the most popular for image
recovery approaches. This BC supposes that the pixels in the domain of an image are
orderly and circularly used to pad the domain outside the image. Thus, the corresponding
linear operator K is a block-circulant-circulant-block blur matrix, which means that the
fast Fourier transform (FFT)-based acceleration and non-iterative subsystem solution are
feasible in image recovery. At present, most image recovery approaches, including many
state-of-the-art ones [2-7], adopt periodic BC because of the simplicity and efficiency it
brings to these approaches. Under periodic BC, image recovery is uniformly modeled as
the regularized optimization problem: minx f(x) + µΦ(Px) (P1), where f(x) is the data-
fidelity term, constant µ > 0 is the regularization parameter, Φ(Px) is the regularizer,
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and P ∈ RL×N is a sparsity-inducing operator. Iterative shrinkage or thresholding (IST)
[2,3] and augmented Lagrangian (AL) [4-7], especially the latter, are popular methods to
solve problem P1. AL method uses FFT to invert the Hessian matrices and non-iterative
solvers for subproblems, and thus achieves high efficiency in recovering blurred images
with low-level noise. However, for image recovery approaches under the periodic BC,
completely avoiding the ring artifacts in recovered images is impossible because of the
image discontinuities caused by the periodic extension of the boundaries.

The assumption on a periodic BC is generally rarely satisfied in real imaging systems.
Actually, the outside pixels of latent sharp images are unknown in general cases because
of the limited support domains of images; that is, the BCs are generally unknown. Un-
der an unknown BC, FFT cannot be directly applied and iterative solvers are needed
for subsystem problems because the blur operators are non-circular. Thus, under non-
periodic BCs, the IST and AL methods are not suitable for image recovery problems and
their performances cannot be maximized. A few approaches [8-10] have been presented
to solve image recovery problems under unknown BCs. In literature [8], the image re-
covery problem under an unknown BC is treated as image deconvolution with inpainting
and is solved by optimizing the total variation model [11] directly. In Reeves’s approach
[9], Tikhonov technology is adopted to regularize image recovery, and conjugate gradient
(CG) iterations are used to apply FFT to matrix inversion. Recently, Sorel [10] improved
the approach in [9] with non-quadratic regularization and variable splitting. Although
the image recovery approaches under unknown BCs successfully avoid ring artifacts, most
of these approaches are generally computationally inefficient. The reason behind this
limitation is that solvers are generally needed to deal with smaller systems first to apply
FFT and non-iterative inversions of matrices. Thus, the efficiencies of image recovery
approaches under unknown BCs must still be improved.

Motivated by the research on image recovery under unknown BCs and based on the
true characteristics of imaging systems, this paper presents a novel image recovery ap-
proach under an unknown BC to eliminate ring artifacts. Compared with existing similar
approaches, the presented approach exhibits the following advantageous properties. 1)
The blur is realistically modeled as the product of a mask matrix with a circulant ma-
trix; therefore, the unknown boundary pixels can be accurately estimated together with
image recovery. 2) Since the mask and the circulant matrix can be decoupled by double
variable splittings, no iterative solvers are required for subproblems generated by alter-
nately optimizing the proposed image recovery problem. 3) The closed-form solutions
of the subproblems can be efficiently derived by means of non-iterative methods. Thus,
the presented approach demonstrates a good performance on efficiency. 4) The presented
approach has the same desirable properties as the alternating optimization-based ap-
proaches, e.g., formally confirmed convergence. The rest of this paper is arranged as
follows. In Section 2, a new problem is proposed to model the image recovery according
to the observation model under an unknown BC. In Section 3, a novel image recovery
approach is presented based on the effective handling of the proposed problem by using
double variable splittings and alternating optimization. In Section 4, comprehensive ex-
periments are conducted to verify and evaluate the presented approach. In Section 5, the
results of this paper are summarized.

2. Problem Formulation. Under a periodic BC, f(x) generally takes the following
form:

1

2
||y − Kx||22 (1)

with circular blur operator K. Based on the discussion above, the unknown BC, which
functions well with the features of real imaging systems, should be adopted to avoid
unpleasant artifacts. To model the blur operator under an unknown BC, K is supposed
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to be the product of a mask matrix H with a circulant matrix B, namely, K = HB.
Thus, the observation model can be re-expressed as

y = HBx + n, (2)

where B ∈ RQ×N represents the convolution with a blur kernel, and H ∈ RM×Q is the
truncation of an identity matrix. If the size of the support of a blur kernel is (2a+1)(2b+1),
as shown in Figure 1, H removes the outermost 2a rows and 2b columns of the pixels of
image Bx. The mask matrix is used to exclude the blurred pixels that depend on the
unknown pixels outside the domain of the latent sharp image x. Thus, M is less than N .
According to Equation (2), under an unknown BC, P1 has the following form:

min
x

1

2
||y − HBx||22 + µΦ(Px) (3)

which is the image recovery problem to be solved by this study.

(a) (b)

Figure 1. Demonstration of the sharp image and the corresponding ob-
served image under the observation model denoted by Equation (2): (a) an
image of size 256 × 256 (100% scale) and (b) the corresponding observed
image of size 240 × 240 (100% scale)

For image recovery problems, regularizers must preserve the details of recovered images
while suppressing the noise in the images to obtain state-of-the-art recovered results.
Regularizers are currently classified into two categories: quadratic and non-quadratic.
Compared with non-quadratic regularizers, quadratic regulizers prefer recovering smooth
images with unsharp edges. Thus, total variation (TV) norm and frame analysis (FA)
norm are best options for regularizer Φ(Px) because of their outstanding performances
in image recovery [12]. Problem (3) can be expressed as

min
x

1

2
||y − HBx||22 + µ||∇x||1 (4)

and

min
x

1

2
||y − HBx||22 + µ||W Tx||1, (5)

respectively with TV norm and FA norm, where ∇ is the gradient operator, which is the
same as that defined in literature [13]; W T represents a tight frame, and if it is normalized,
W T W = I is satisfied [14].

3. Presented Approach. The cost function of the problem cannot be minimized di-
rectly because it is non-quadratic. In addition, under unknown BCs, most methods that
are used under periodic BCs cannot be directly applied to problem (3). To make the prob-
lem solvable, variable splitting [15], which is the most popular strategy at present, can be
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employed. Through standard variable splitting technology, problem (3) is formulated as
an equivalent constrained form:

min
x,z

1

2
||y − HBx||22 + µΦ(z)

s.t. z = Px,
(6)

where z ∈ RL is a newly introduced auxiliary variable. With alternating optimization,
the constrained problem (6) can be decoupled into the following subproblems:

xk+1 = argmin
x

||y − HBx||22 + λ||zk − Px||22, (7)

zk+1 = argmin
z

µΦ(z) +
λ

2
||z − Pxk+1||22. (8)

In this case, the optimal solution of original problem (3) can be obtained by alternately
computing the two subproblems.

The cost function of problem (7) is smooth, and its direct minimization generates the
following closed-form solution:

xk+1 =
(

BT HT HB + λP TP
)

−1 (

BT HT y + λP Tzk
)

. (9)

HTH has no structural features that enable the direct application of FFT. Thus, precon-
ditioned CG (PCG) can be employed as an alternative to iteratively calculate Equation
(9). For subproblem (8) Φ(·) is l1-norm (i.e., || · ||1), that is, this subproblem is an l1 − l2
denoising problem, because the TV and FA norms are adopted as regularizers in this
work. Recent studies indicate that the most suitable method to address these problems
is proximal mapping [16].

Through PCG, solving Equation (9) may converge to a feasible solution. The solution
cannot be guaranteed to be exact, and the iterative update of x∗ slows down the conver-
gence. To avoid these disadvantages with a fast and accurate non-iterative update of x∗,
this paper proposes a novel double variable splittings strategy where the problem (3) is
equivalently reformulated as

min
u,z

1

2
||y − Hu||22 + µΦ(z)

s.t. u = Bx, z = Px,
(10)

where u ∈ RQ is an auxiliary variable. Alternating optimization can decompose the
constrained problem (10) into the following subproblems:

xk+1 = argmin
x

γ||uk − Bx||22 + λ||zk − Px||22, (11)

uk+1 = argmin
u

||y − Hu||22 + γ||u − Bxk+1||22, (12)

zk+1 = argmin
z

µΦ(z) +
λ

2
||z − Pxk+1||22. (13)

Subproblems (11) to (13) clearly show that double variable splittings not only decouple
the non-quadratic and quadratic parts of problem (3), but also decouple the operators
H and B. The benefits of this “double decouplings” will be demonstrated when dealing
with problem (3) by alternately computing the subproblems above.

The cost functions of subproblems (11) and (12) are smooth. Thus, the closed-form
solutions can be directly obtained as

xk+1 =
(

γBT B + λP TP
)

−1 (

γBT uk + λP T zk
)

(14)

and

uk+1 =
(

γI + HTH
)

−1 (

γBxk+1 + HT y
)

(15)
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As stated above, subproblem (13) can be addressed by proximal mapping, where the
proximity operator (i.e., close-formed solution) of this subproblem is the soft-thresholding
function [17], which is:

soft
(

Pxk+1,
µ

λ

)

= argmin
z

µΦ(z) +
λ

2
||z − Pxk+1||22 (16)

where soft
(

·, µ

λ

)

represents the element-wise application of the function s 7→ sign(s) max
(

|s| − µ

λ
, 0

)

.
Based on Equations (14) to (16), the presented approach is summarized as follows:

(1) Input: γ, λ, and µ; H , B, and P ; u0 and z0

(2) Precompute: HT H , BT B, P TP , and HT y
(3) For k = 0 to Kmax

a. xk+1 =
(

γBT B + λP TP
)

−1 (

γBT uk + λP T zk
)

b. uk+1 =
(

γI + HT H
)

−1 (

γBxk+1 + HT y
)

c. zk+1 = soft(Pxk+1, µ

λ
)

d. If the stopping criterion is satisfied
(i) Stop iteration;

e. Endif

(4) Endfor

(5) Output: xk+1

The presented approach is based on double variable splittings and alternating optimiza-
tion, and is thus referred to as DVSAO. In the DVSAO framework, BT B, BT uk, and
Bxk+1 can all be calculated through FFT, and corresponding computing costs are all

O(n log n).
(

γI + HT H
)

is a diagonal matrix and the computing costs of
(

γI + HT H
)

−1

and HTy are both O(n) because H is the truncation of an identity matrix. Depending
on whether P is the gradient operator or a tight frame, P T zk has a computing cost of
O(n log n) and P T P has a computing cost up to O(n log n). The soft function computes
zk+1 component-by-component; thus, its computing cost is O(n). The analysis above
indicates that the presented approach will achieve high running efficiency.

4. Numerical Results. In this section, the recoveries on the observed images illustrated
in Figures 2(c) and 2(d) are performed to support the validity of the presented DVSAO
approach. To produce the observed images according to Equation (2), the uniform blur
of size 17 × 17 (i.e., a = 8, b = 8) is used. As mentioned in Section 2, the corresponding
observed images are smaller compared with the sharp images illustrated in Figures 2(a)
and 2(b) because the mask matrix removes a certain width of outermost pixels from the
blurred images. The blurred signal-to-noise ratio (BSNR) defined as

BSNR = 10 × log10

||x − E{x}||22
Nσ2

(17)

is adopted to measure the degradation degrees of the observed images, where σ2 is the
variance of the noise and E{x} is the mean of x. To evaluate the presented approach
by comparison, the approach based on variable splitting and PCG (VSPCG), which was
mentioned in Section 3, is introduced as the competitor. Notably, techniques that are
similar to VSPCG were also adopted in literature [9,10]. All the approaches (i.e., VSPCG
and DVSAO) are run on a laptop with a Windows 7 operating system, Intel Core i5 CPU
@ 2.40 GHz, 4 GB RAM, and MATLAB R2012b.

To ensure that the real performances of all approaches are well demonstrated, the
parameters of these approaches are empirically configured as follows: 1) γ = 1 × 10−2,
λ = 2× 10−5, and µ = 8× 10−7 for DVSAO TV (DVSAO approach with TV norm as the
regularizer); 2) γ = 1 × 10−2, λ = 2 × 10−5, and µ = 5 × 10−7 for DVSAO FA (DVSAO
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(a) (b)

(c) (d)

Figure 2. Sharp benchmark images and the corresponding observed im-
ages: (a) boat image of size 256×256, (b) cameraman image of size 256×256;
(c) observed boat image with BSNR = 40 dB, (d) observed cameraman im-
age with BSNR = 40 dB. All the observed images have a 240 × 240 size.

approach with FA norm as the regularizer); and 3) γ = 1 × 10−3, λ = 1 × 10−4, and µ =
5 × 10−5 for both VSPCG TV (VSPCG approach with TV norm as the regularizer) and
VSPCG FA (VSPCG approach with FA norm as the regularizer). For VSPCG FA and
DVSAO FA, P is the redundant Haar frame, which is known to produce better recoveries.
The stopping criteria of all approaches are uniformly set to “

(

||xk+1 − xk||fro/||x
k||fro

)

<
1×10−4 or k ≥ 100”. To fairly compare the performances of all approaches, the improved
signal-to-noise ratio (ISNR), which is defined as

ISNR = 10 × log10

||x − y||22
||x − xk+1||22

(18)

is employed as the metric of the quality of recovered images. Normally, higher ISNR
values indicate better recovered results.

The recovered images of all approaches are shown in Figure 3, and the corresponding
ISNR values are reported in Table 1. These results evidently indicate that the presented
DVSAO approach is feasible and effective, the missing edges and textures are properly
reconstructed, and, more importantly, the artifacts in recovered images are significantly
reduced. DVSAO TV behaves better than DVSAO FA concerning the ISNR values. This
outcome occurs mainly because the TV norm has a more powerful capacity to preserve the
edge and textures of recovered images compared with the FA norm, which is also experi-
mentally verified by the results obtained by VSPCG TV and VSPCG FA. The CPU time
summarized in Table 1 represents the mean running time of the corresponding approach
when an observed image in Figure 2 is repeatedly recovered 10 times. Based on time
consumption, the approaches with the TV regularizer are faster than those with the FA
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Images recovered by all approaches: (a)-(b) images recovered
by VSPCG TV, (c)-(d) images recovered by VSPCG FA, (e)-(f) images
recovered by DVSAO TV, and (g)-(h) images recovered by DVSAO FA

Table 1. ISNR values of recoveries and average time consumed

Approaches Boat Cameraman CPU Time

VSPCG TV 5.57 dB 6.37 dB 18.72 s
VSPCG FA 4.28 dB 5.06 dB 29.83 s
DVSAO TV 6.90 dB 7.03 dB 10.24 s
DVSAO FA 6.59 dB 6.83 dB 12.20 s

regularizers because the redundant Haar frame with four-level decomposition used in this
study slows down the latter. PCG requires more iterations to converge, which negatively
affects the speed of image recovery, and it cannot provide exact solutions. Compared with
the VSPCG approach, the DVSAO approach demonstrates better overall performance in
terms of visual effects, ISNR values, and time consumption. To analyze the convergences
of all approaches, the comparisons of changes of cost functions 0.5×||y−HBx||22+µΦ(Px)
are plotted in Figure 4. The figure illustrates that, to converge to a solution that satisfies
(

||xk+1 − xk||fro/||x
k||fro

)

< 1 × 10−4, the presented DVSAO approach needs fewer than
100 iterations, whereas the VSPCG approach needs significantly more iterations to do so.

5. Conclusions. This paper presents a novel DVSAO approach to solve the image re-
covery problem (3) under an unknown condition. Based on double variable splittings and
alternating optimization, several subproblems are alternately and iteratively computed to
obtain the solutions to the problem (3). To validate the presented approach, experiments
on recovering uniform-blurred images are performed. The recovered images, ISNR values,
and time consumption demonstrate the validity of the presented approach and its ad-
vantages over similar VSPCG approaches. Future work involves extending the presented
approach to deal with image inpainting problems, which share numerous similarities with
image recovery problems under unknown boundary conditions.
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Figure 4. Changes of cost functions
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