
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 10, October 2016 pp. 2123–2128

VISION-BASED REINFORCEMENT LEARNING IN ENVIRONMENTS
WITH ACTION NOISE

Atsushi Ueno, Natsuki Kajihara and Tomohito Takubo

Graduate School of Engineering
Osaka City University

3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
{ueno; takubo }@info.eng.osaka-cu.ac.jp; kajihara@kdel.info.eng.osaka-cu.ac.jp

Received March 2016; accepted June 2016

Abstract. We have developed a vision-based reinforcement learning system that can
learn appropriate suboptimal goal-directed behavior quickly. In this paper, we propose a
new version of the system for tackling action noises. We make two improvements. First,
we introduce a new definition of distance in the input space defined by the normalized
Bag-of-Visual-Words representation. By using this definition, two inputs at two close
points in position and orientation space tend to be close also in the input space. Second,
we introduce fine control of actions for following the promising path obtained in learning.
We verify the effectiveness of these two improvements by simulation experiments in a
simple 3D room environment with some action noise.
Keywords: Reinforcement learning, Vision, Goal-directed behavior, Action noise

1. Introduction. Reinforcement learning (RL) is suitable for learning appropriate be-
havior in unknown environments. When acting in a real environment, visual information
is so rich that it is very useful for agents in it to have vision. However, typical RL methods
cannot handle raw visual input data since it is very high dimensional. So far, there have
been two different approaches for tackling this problem. One utilizes some image feature
descriptor in order to map images to inputs of an RL algorithm. The other utilizes deep
neural networks in order to learn features and behavior.

In the former approach, the definition of features is man-made. Jodogne and Piater
[1] proposed a method based on this approach. In the method, a feature-based image
classifier is introduced in front of an RL algorithm. This method has been tested on real
camera images and succeeded in learning goal-directed behavior in several tasks. It is,
however, not applicable to learning of robots with vision because its learning is based on
images that are collected in a manner unnatural for such robots: they are cropped out
from a 2D image or collected from a fixed set of about a thousand images in a small state
space. Pérez et al. [2] proposed a method that uses a Bag-of-Visual-Words (BoVW) [3]
representation for each image as an input to RL. A BoVW for each image is a histogram
of visual words appearing in the image. A visual word is a characteristic local feature.
Many local features are collected from many images in advance and clustered into groups
based on local brightness gradients. Each group corresponds to each visual word. The
paper [2] tackled a task in which a robot with an on-board camera learns goal-directed
behavior, but did not show effective results.

In the latter approach, the features themselves are learned based on the images faced by
the agent in learning. Therefore, the same agent can learn flexibly in various environments.
Mnih et al. [4] proposed excellent methods based on this approach. Their agent can learn
appropriate behavior in various tasks, including a learning task of finding rewards in
random 3D mazes using vision. A common weak point of such methods with deep neural
networks is that they need a large amount of computational power in order to tune millions

2123



2124 A. UENO, N. KAJIHARA AND T. TAKUBO

or tens of millions of parameters. For example, training took approximately 3 days on a
standard multi-core CPU in the above random 3D maze task [4].

We have been developing a vision-based RL system that can learn appropriate subopti-
mal goal-directed behavior quickly [5]. This type of fast suboptimal learning is important
for the following two reasons:

• It is suitable for tasks that do not require proficiency. It costs too much to acquire
proficiency in tasks that may be performed only a few dozens of times in the learner’s
lifetime.
• It can provide a reasonable initial solution to a more exhaustive learning method. In

a learning problem with a huge solution space, we think that two-stage learning is
feasible. First, a fast learning method is used to find a suboptimal solution. Second,
a more exhaustive learning method is used to refine it.

Our RL system has two features. First, the input space for RL is defined by the normal-
ized BoVW representation as with the method of Pérez et al. [2]. Since visual words in
this representation can be defined autonomously based on the images faced by the learn-
ing agent,1 we think that BoVW is suitable as an input to vison-based learning without
previous knowledge of the environment. Second, it uses a strongly exploitation-oriented
RL method. In this method, the continuous input space is discretized into a lot of hy-
perspheres and the blank space. The inside region of each hypersphere is regarded as a
discretized state. Each state has an assigned action which is executed every time when
the current input gets in the region of the state. An agent with this method obtains chains
of states from start points to goal points by trial-and-error learning from scratch. Once
it gets to a goal point, the method constructs a chain from the success route removing
all the closed paths on the route. Thereafter, it adheres to the path on the chain and
does not search for better solutions as long as the agent continues to succeed. Though
it can obtain only a suboptimal solution, and the knowledge about the environment it
has obtained is limited around the obtained path, this limitation means the lightness of
computation. Therefore, it is suitable for learning complicated tasks quickly. An agent
with this RL system has the ability to certainly learn a good path from a start to a goal
in a simple 3D room environment within a few dozens of trials. We, however, found that
the ability deteriorates in cases with some action noise. In such cases, the agent tends to
fail to follow the obtained path, which makes it vulnerable or lost.

In this paper, we propose improvements for this problem. These improvements are
important because almost all actions in a real environment are noisy. First, we introduce
a new definition of distance in the BoVW input space. By using this definition, two inputs
that are made of two images photographed at two close points in position and orientation
space tend to be close also in the input space. Second, we introduce fine control of actions
for following the obtained path. We verify the effectiveness of these two improvements by
simulation experiments in a simple 3D room environment with some action noise.

2. Previously Proposed System. In this section, we explain our previously proposed
RL system [5]. It specializes in RL in goal-directed tasks. An agent has a fixed start
point and a fixed goal region. It starts from the start point and moves while searching
the goal region. Time is discretized into time steps. At each time step, the agent takes
an image with an on-board camera, generates an input to the RL system from the image,
and decides and executes an action. When it gets to a point in the goal region, it receives
a large reward and is brought back to the start point. In this paper, a sequence of actions
from the start point is called an episode. The RL system continues learning through
episodes. It can learn quickly an appropriate sequence of actions from the start point to
the goal region. Neither any previous knowledge about the environment, such as a map,

1As we have seen above, the definition of underlying features is man-made.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.10, 2016 2125

nor any instruction is given to the agent. It has to execute the learning autonomously
based only on images from the camera and rewards from the environment. The reward
on arrival in the goal region is called the goal reward. A negative small reward (a penalty)
is given when something wrong happens, such as bumping into a wall.

2.1. State definition. The definition of a state of this system is based on that of the
method of Miyazaki et al. [6]. A state s is characterized by the center coordinate µs,
an assigned action as, and the value Vs. Each state s is created based on an experience
in which the agent got an input x and executed an action a. When creating state s, an
isotropic Gaussian function with a standard deviation σ is constructed centering on x in
the input space. x is saved as the center coordinate µs, and a is saved as the assigned
action as. The region in which the product of the Gaussian function and Vs is greater
than a threshold forms an n-dimensional hypersphere, which is defined as the region of
state s. The assigned action of each state is executed every time when a new input gets
in the state region. The value of each state is used for specifying the size and life-span of
the state.

2.2. Random-Walk Phase. The learning is divided into two phases: Random-Walk
Phase and Refining Phase. First, the agent is in Random-Walk Phase. In this phase,
the agent takes an image and executes a random action at each time step. Each episode
finishes when the agent gets to the goal region (a success episode) or exceeds the upper
limit of time steps (a failure episode). The limit is denoted by Thstep. All the images
taken in the episode are stored if it has been a success one, or deleted if it has been a
failure one. Then, for either case, the agent is brought back to the start point. The agent
keeps on executing episodes of random-walk behavior until the number of stored images
becomes greater than a threshold Thimage. Then, the system uses a BoVW technique to
create the input space and an initial set of states. All features in the first Thimage images
in Random-Walk Phase are detected and described by the SURF descriptor [7], visual
words are defined by clustering all the features, the space of the normalized histograms
of them is defined as the input space for RL, and BoVW representations for all images
in one of the shortest episodes are generated and normalized to create a set of states. In
creating a state, if there is already another state at a very close position (the distance
< lnear), only the one closer to the goal in the episode is kept. This is the same measure
as used in [6] for removing closed paths in the episode. The values of all the created
states are initialized to the initial value Vinit, and updated by the goal reward in the
manner described in below Section 2.3. They are registered into the main memory, and
the learning transits to Refining Phase.

2.3. Refining Phase. At each time step, the agent takes an image and generates the
current input. A state corresponding to the input is searched for among the registered
states in the main memory. In this process, a score of the current input x is calculated
for each state s by the following equation:

ps(x) = exp

[
−∥x− µs∥2

2σ2

]
· Vs. (1)

The state corresponding to x is the one with the highest score which is higher than a
constant threshold pborder. The agent executes the assigned action of the state. If x has
no corresponding state, a random action is executed, and a new state corresponding to
it is created. Its value is set to the initial value Vinit, and it is stored in the temporary
memory.

When the agent obtains the goal reward rgoal, the values of all states in that episode
are updated by the following update rule:

Vst ← Vst + rgoal · γL−t,



2126 A. UENO, N. KAJIHARA AND T. TAKUBO

where st is the state at time step t (t = 0, 1, 2, . . . , L) in the episode, and γ ∈ [0, 1] is a
discount rate parameter. When the agent obtains a penalty, the value of the penalized
state is updated by the following update rule:

Vs ← ap · Vs − bp,

where ap and bp are penalty parameters. If the number of visits to any state exceeds a
constant threshold Thvisit, it is judged that there is some closed path passing through the
state. Then, all the states which are visited more than Thvisit − 1 times in the episode
are judged to be included in the closed path and penalized together.

The termination condition of each episode is the same as in Random-Walk Phase. After
an episode finishes, all the states in the temporary memory are registered into the main
memory only if the episode has been a success one. They are deleted in all cases before
the next episode starts.

3. Proposed Improvements. We have developed a new version of our vision-based RL
system by making two improvements for tackling action noises. Its processes are the same
as in the previous version described in Section 2 except for these improvements.

3.1. A new definition of distance in the input space. As shown in Equation (1),
the previous version uses the Euclidean distance to measure between two points in the
input space. We have found that two inputs that are made of two images photographed
at two close points in position and orientation space are not always close to each other
in the input space. Especially, when the numbers of features in the images are small,
the distance tends to be estimated too large. The cause of this seems to be that the
Euclidean distance is not suitable for measuring in the normalized BoVW input space,
whose element is a kind of histogram.

For handling this problem, we introduce a new definition of distance in the input space
based on the histogram intersection. It is used to measure the similarity between two
histograms, h1 and h2, and defined as follows:

H(h1,h2) =

∑n
i=1 min(h1(i), h2(i))∑n

i=1 h1(i)
,

where ha(i) (a = 1, 2) denotes the i-th component of histogram ha. The new definition
of distance between two points, x1 and x2, in the input space is as follows:

Dist(x1, x2) =
1−H(x1, x2)

H(x1, x2)
.

This definition of distance is used in Equation (1) to decide the corresponding state to
each input.

3.2. Fine control of actions. We have assumed that the agent is assigned fixed length
actions in experiments with the previous version. In environments with action noise,
the agent tends to get out of the obtained path to the goal accumulating small errors
of actions. Getting out of the path is unfavorable preventing the agent from getting to
the goal and making the path vulnerable or lost. Therefore, we introduce fine control of
actions for following the sequence of the inputs in the last success episode.

In Refining Phase, the agent checks if it is still on the following path by the following
inequality: Dist(xk, x

′
k) < lnear (k = 1, 2, . . . , t), where t is the current time step, xk is

the input at time step k in the current episode, and x′
k is the input at time step k in the

last success episode. If it is still on the following path, at the next time step t + 1, it
controls the length of each action to stop at a point as near as possible to the point in the
input space in the last success episode. To put it in detail, it observes 21 inputs xt+1,j

(j = 0, 1, . . . , 20) at 21 points ranging from 90 percent to 110 percent of the fixed length



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.10, 2016 2127

of the action with 1 percent increments. The terminal point of the action and the input
at time step t + 1 are decided as follows:

xt+1 = arg min
xt+1,j

Dist(xt+1,j, x
′
t+1).

Once it gets out of the following path, it stops this action control from then on.

4. Experiments. We prepare a simple environment in order to verify the effectiveness
of the improvements. Figure 1 shows the square room (1.4m×1.4m) environment with
a robot and a square object (0.20m×0.20m) at the center of the room. The start point
is located at 0.30 meters right of and 0.30 meters below the top left corner of the room,
and the starting direction is down. The goal is a square region (0.35m×0.35m) located at
the bottom right corner. All walls of the room and the object are filled with 32 photos
from Caltech-256 and have adjacent no-entry zones 0.10 meters wide. The robot observes
the environment with the mounted camera which takes images of 480×320 pixels and
whose horizontal and vertical angles of view are 90 degrees and 67.5 degrees, respectively.
It has three discrete actions: a 0.10-meter forward movement and 45-degree left and
right rotations. All lengths of actions have errors, each of which is distributed uniformly
between −10 and 10 percent of the specified length. In random selection, it selects a
forward movement with a probability of 50 percent, and both left and right rotations are
selected with a probability of 25 percent.

Figure 1. A square room environment

The parameters for learning are set as follows: σ = 0.7, Thstep = 3000, Thimage = 1000,
lnear = 2.0, Vinit = 0.1, pborder = 0.001, Thvisit = 3, rgoal = 1.0, γ = 0.99, ap = 0.1, bp for
a closed path (bclosed

p ) is set to 0.2, and bp for a bump (bbump
p ) is set to 0.1. The number of

dimensions of the input space is set to 1000.
Figure 2 shows the learning curves of the new and the previous version of the RL system

averaged over 10 runs. The learning of the new version converges after approximately 50
episodes. We think that it is very quick in comparison with the training times of exhaustive
learning methods, such as the method in [4].2 The convergence value is 35.9, while the
average by the previous version during the same period is about 64.5. This result shows
that the learning performance has been substantially improved by the improvements for
tackling action noises. We have checked and found that the numbers of removed states
after convergence in the new version are substantially low: 4.3 per episode, while 24.8 per
episode in the previous version. It shows that the new version is successful in maintaining

2Note that the target of the method in [4] is to learn a complex task exhaustively over a few or several
dozens of hours, which is different from that of ours.



2128 A. UENO, N. KAJIHARA AND T. TAKUBO

Figure 2. Learning curves. They are averaged in every 10 episodes.

the obtained path. The minimum number of time steps to the goal is 18 in this task. The
new version takes nearly twice the time. This difference is, however, not important. It
has quickly obtained and maintained paths to the goal without closed subpaths, which is
precisely the purpose of our developing RL system.

5. Conclusions. In this paper, we have proposed a new version of our vision-based
RL system for goal-directed tasks with action noise. We have made two improvements.
First, we have introduced a new definition of distance in the input space defined by
the normalized BoVW representation. By using this definition, two inputs at two close
points in position and orientation space tend to be close also in the input space. Second,
we have introduced fine control of actions for following the promising path obtained in
learning. With these improvements, the agent has the ability to quickly obtain and
maintain appropriate goal-directed behavior in the simple 3D room environment with
some action noise. We are now trying to develop a vision-based RL robot in a real
environment.

REFERENCES

[1] S. Jodogne and J. H. Piater, Closed-loop learning of visual control policies, J. Artificial Intelligence
Research, vol.28, pp.349-391, 2007.

[2] X. Pérez, C. Angulo, S. Escalera and D. Pardo, Vision-based navigation and reinforcement learning
path finding for social robots, Achievements and New Opportunities in Computer Vision: Proc. of
the 5th CVC Workshop, pp.121-125, 2010.

[3] J. Yang, Y.-G. Jiang, A. G. Hauptmann and C.-W. Ngo, Evaluating bag-of-visual-words representa-
tions in scene classification, Proc. of Int. Workshop on Multimedia Information Retrieval, pp.197-206,
2007.

[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver and K. Kavukcuoglu,
Asynchronous Methods for Deep Reinforcement Learning, arXiv:1602.01783 [cs.LG], 2016.

[5] A. Ueno, N. Kajihara, N. Fujii and T. Takubo, Vision-based path learning for home robots, Proc. of
the 10th Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, pp.411-414,
2014.

[6] K. Miyazaki, H. Kimura and S. Kobayashi, An extension of the rational policy making algorithm to
continuous state spaces, Trans. Japanese Society for Artificial Intelligence, vol.22, no.3, pp.332-341,
2007 (in Japanese).

[7] H. Bay, T. Tuytelaars and L. V. Gool, SURF: Speeded up robust features, Proc. of European Conf.
on Computer Vision, pp.404-417, 2006.


