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Abstract. The stability of networked control system based on the packet dropouts, net-
worked delay and white noise is studied in this paper. The limitation value of signal-to-
noise ratio (SNR) to stabilize networked control systems is obtained by the one-parameter
compensator and the frequency domain analysis method. It is shown that the limitation
value of SNR to stabilize networked control system is determined by the position of the
non-minimum phase zeros and the unstable poles, the networked delay and the packet
dropouts probability. Finally, the efficiency of the result is verified by using some typical
examples.
Keywords: Networked control systems, Networked delay, Packet dropouts probability,
Non-minimum phase zeros

1. Introduction. In recent years, networked control systems have been widely used in
many fields, such as industrial automation, distributed mobile communication and un-
manned aerial vehicle [1]. The networked control systems bring a lot of convenience, but
also bring a lot of new challenges to humans’ lives. In the networked control systems,
the data is transmitted through a communication network; however, the limitation of
bandwidth and the channel capacity will lead to the date packet dropouts and networked
delay. These problems often cause the decline of system performance, and even affect
the instability of the system. However, the traditional control theory cannot be simply
applied in the networked control systems. Faced with the new problems in the networked
control systems, we should adopt a new analysis method to study and design the net-
worked control systems. At present, more and more scholars have studied the stability
of networked control systems. The problem of modeling and stabilization of a wireless
networked control system with packet dropouts and networked delay was considered in
paper [2]. A stochastic Lyapunov function approach to establish stability results of the
networked control systems was proposed in paper [3]. The distributed finite-horizon filter-
ing problem for a class of time-varying systems over lossy sensor networks was considered
in paper [4]. The problem of stabilization about uncertain networked control systems
with random but bounded delays was discussed in paper [5].

Above all of these are from the perspective of the state space to study the stability of
the networked system, and the condition to stabilize the system is obtained by solving the
linear matrix inequality (LMI). However, in the process of the actual networked control
system communication, the signal transmitted in the channel is described by its frequency
domain characteristics. However, the stability of the networked systems is analyzed rarely
by using the frequency domain analysis method.

At present, some achievements have been obtained to study the performance of net-
worked control systems by the frequency domain method [6], and the research results
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showed that the required value to stabilize the networked control system is decided by
the system internal structure characteristics and network channel parameters. It was
pointed out that the optimal tracking performance of the multi-variable discrete control
system was determined by the basic characteristics of the system and the bandwidth of
the network channel in paper [7]. The stability of networked control systems based on
the effect of the SNR and the networked delay was studied in paper [8]. Therefore, it has
a great advantage to study the networked control system by using the frequency domain
analysis method.

In this paper, the stability of networked control systems is studied based on the effect
of communication networked delay and packet dropouts. The limitation value of the SNR
to stabilize networked control systems is obtained by the method of frequency domain
analysis and spectral decomposition. The limitation value is determined by the position of
the non-minimum phase zeros and the unstable poles, the networked delay and the packet
dropouts probability. The obtained results show that there is a close relationship between
the minimum value of the SNR to stabilize networked control systems and the essential
characteristics of the system and communication network parameters, theoretically, which
will be used to guide the design of networked control systems.

This paper is organized as follows. Section 2 introduces the problem formulation. The
stability of networked control systems based on the packet dropouts, networked delay and
white noise is studied in Section 3. A typical example is given to illustrate the results in
Section 4. The paper conclusion and future research direction are presented in Section 5.

2. Problem Formulation. The notation used throughout this paper is defined as fol-
lows. z̄ denotes the conjugate of the complex number z. The expectation operator is
defined as E{·}. For any vector u, and matrix A, uT , uH , and AT , AH are their transpose
and conjugate transpose, respectively; Euclidean norm of the vector u is ∥u∥. Let the
open right-half plane be denoted by C+ := {s : Re(s) > 0}, the open left-half plane is
C− := {s : Re(s) < 0}. Denote the Euclidean vector norm is ∥·∥2 and ∥·∥F as the Frobe-
nius norm, in addition ∥G∥F = tr(GHG). L2 is Lebesgue space standard frequency range

with the inner product < f, g >:= (1/2π)
∫ +∞
−∞ tr[fH(jw)g(jw)]dw, which further induces

the L2 norm ∥f∥2
2 =< f, f >. Next, L2 is equivalent to two orthogonal subspaces H2

and H⊥
2 which are given in paper [9]. Finally, define RH∞ are all stable, proper rational

function matrices.
We establish the networked control systems as depicted in Figure 1, where the problem

is to investigate the stability of networked control systems.

Channel
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Figure 1. Networked control systems with packet dropouts and networked delay

In Figure 1, G represents the plant model, K represents the single degree compensator,
and y represents the system output, whose transfer functions are denoted as G(s), K(s)
and Y (s), respectively. The characteristics of the network channel are reflected by the
data packet dropouts, networked delay and white noise, which are denoted as dr, ι and n,
respectively. The random process of a Bernoulli distribution can be used to simulate the
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process of data packet dropouts. The parameter dr represents whether or not a packet is
dropped.

dr =

{
0 if the systems output is not successfully transmitted to the controller

1 if the systems output is successfully transmitted to the controller

And the distribution probability for dr is: P {dr = 1} = 1 − q, P {dr = 0} = q, 0 ≤
q < 1, and q represents the packet dropouts probability. In following analysis, this is an
assumption that the packet dropouts and additive white noise are completely independent.
The input energy of the network channel is limited, and then E

{
∥Y ∥2} < Γ where Γ is

the maximum value of the input energy of the network channel.
Making the networked control systems achieve stability, the input energy of the network

channel must be greater than a certain limitation of the SNR. In order to obtain the
limitation value of the SNR to stabilize networked control systems, we first derive the
expression of the output power spectral density of the system. According to Figure 1, we
can obtain

Y =
(
Y dre

−ιs + n
)
GK (1)

Firstly, SY (jω) represents the output frequency characteristics of communication net-
work channel, and SnY (jω) represents the frequency characteristics from the white noise
of communication network to the system output. According to the method in paper [10]
and a simple calculation, (1) can be converted to

SY (jω) =
G(jω)K(jω)

1 − qe−jωι(jω)G(jω)K(jω)
SnY (jω)

Further, according to paper [10], we can obtain

E
{
∥Y ∥2} = P =

∥∥∥∥ KG

1 − e−ιsK(1 − q)G

∥∥∥∥2

2

Φ

where P represents the input power of the communication network channel, and Φ rep-
resents the power spectral density of white noise. γ = P

Φ
represents the SNR of network

channel. Therefore, the SNR of the system must be satisfied∥∥∥∥ KG

1 − e−ιsK(1 − q)G

∥∥∥∥2

2

<
P

Φ
(2)

3. Stability Analysis of Networked Control Systems. For any transfer function
(1 − q)G, consider a coprime factorization of (1 − q)G as

(1 − q)G =
N

M
(3)

where N , M ∈ RH∞, and it meets Bezout identity

MX − NY e−ιs = 1 (4)

where X, Y ∈ RH∞. It is well known that every stabilizing compensator K can be
characterized by Youla parameterization [2].

K =

{
K : K =

(Y − MQ)

X − e−ιsNQ
, Q ∈ RH∞

}
(5)

We also know that a non-minimum phase transfer function can be decomposed into a
minimum phase part and an all-pass factor [11]. Then

N = (1 − q)LzNm, M = BpMm (6)

where Lz and Bp are all-pass factors, Nm and Mm are the minimum phase parts, Lz

includes all non-minimum phase zeros zi (zi ∈ C+, i = 1, · · · , n) of the given plant, and
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Bp includes all unstable poles pj (pj ∈ C+, j = 1, · · · ,m) of the given plant [2]. Lz and
Bp can be expressed as

Lz(s) =
ns∏
i=1

s − zi

s + z̄i

, Bp(s) =
m∏

j=1

s − pj

s + p̄j

(7)

Theorem 3.1. As shown in Figure 1, assuming that the plant has unstable poles pj

(pj ∈ C+, j = 1, · · · , m) and non-minimum phase zeros zi (zi ∈ C+, i = 1, · · · , n) in
order to stabilize the networked control systems, the SNR of the communication network
channel must be satisfied

P

Φ
>

1

(1 − q)2

∑
j,i∈m

4Re(pj)Re(pi)

p̄j + pi

eιpjeιpiL−1
z (pi)L

−H
z (pj)

b̄jbi

(8)

where R1 ∈ RH∞, bj =
∏

i∈N,i ̸=j

pi−pj

pj+p̄i
.

Proof: Tyn represents the transfer function of the noise and the output signal, and

according to (2), we can get Tyn = KG
1−eιsK(1−q)G

, and get inf
K∈K

∥∥∥ KG
1−e−ιsK(1−q)G

∥∥∥2

2
.

According to (2), (3), (4) and (5), we can get

TY n = (1 − q)−1(Y − MQ)N

Define J∗
1 = inf

Q∈RH∞
∥TY n∥2

2, and then

J∗
1 = inf

K∈K

∥∥∥∥(Y − MQ)

1 − q
N

∥∥∥∥2

2

(9)

Because Lz is an all-pass factor, and according to (6) and (9), J∗
1 can be converted to

J∗
1 = inf

K∈K

∥∥(1 − q)−1(Y − MQ)Nm

∥∥2

2

Because Bp is an all-pass factor, J∗
1 can be converted to

J∗
1 =

1

(1 − q)2
inf

K∈K

∥∥∥∥NmY

Bp

− MmNmQ

∥∥∥∥2

2

According to the decomposition of the partial fraction

NmY

Bp

=
∑
j∈m

(
p̄j + s

s − pj

)
Nm(pj)Y (pj)

bj

+ R1

where R1 ∈ RH∞, bj =
∏

i∈N,i ̸=j

pi−pj

pj+p̄i
. Therefore

J∗
1 =

1

(1 − q)2
inf

Q∈RH∞

∥∥∥∥∥∑
j∈m

(
p̄j + s

s − pj

)
Nm(pj)Y (pj)

bj

+ R1 − NmQMm

∥∥∥∥∥
2

2

=
1

(1 − q)2
inf

Q∈RH∞

∥∥∥∥∥∑
j∈m

(
p̄j + s

s − pj

− 1

)
Nm(pj)Y (pj)

bj

+ R1 +
Nm(pj)Y (pj)

bj

− NmQMm

∥∥∥∥∥
2

2
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Because
∑
j∈m

(
p̄j+s

s−pj
− 1

)
Nm(pj)Y (pj)

bj
is in H⊥

2 and R1 +
Nm(pj)Y (pj)

bj
− NmQMm is in H2,

then

J∗
1 =

1

(1 − q)2

∥∥∥∥∥∑
j∈m

2 Re(pj)

s − pj

Nm(pj)Y (pj)

bj

∥∥∥∥∥
2

2

+
1

(1 − q)2
inf

Q∈RH∞

∥∥∥∥R1 +
Nm(pj)Y (pj)

bj

− NmQMm

∥∥∥∥2

2

(10)

According to (4) and M(pj) = 0, we can obtain

Nm(pj)Y (pj) = epjι(pj)L
−1
z (pj) (11)

We plug (11) into (10), then

J∗
1 =

1

(1 − q)2

∥∥∥∥∥∑
j∈m

2 Re(pj)

s − pj

eιpj(pj)L
−1
z (pj)

bj

∥∥∥∥∥
2

2

+
1

(1 − q)2
inf

Q∈RH∞

∥∥∥∥R1 +
eιpjL−1

z (pj)

bj

− NmQMm

∥∥∥∥2

2

Because Nm and Mm are the minimum phase parts, and R1 ∈ RH∞, Q ∈ RH∞,

inf
Q∈RH∞

∥∥∥R1 +
eιpj L−1

z (pj)

bj
− NmQMm

∥∥∥2

2
can be made arbitrarily small by choosing, then

inf
Q∈RH∞

∥∥∥∥R1 +
eιpjL−1

z (pj)

bj

− NmQMm

∥∥∥∥2

2

= 0

Therefore

J∗
1 =

1

(1 − q)2

∥∥∥∥∥∑
j∈m

2 Re(pj)

s − pj

eιpjL−1
z (pj)

bj

∥∥∥∥∥
2

2

By a simple calculation, we can get

J∗
1 =

1

(1 − q)2

∑
j,i∈m

4Re(pj)Re(pi)

p̄j + pi

eιpjeιpiL−1
z (pi)L

−H
z (pj)

b̄jbi

The proof is completed.
The obtained theorem shows that the limitation value of SNR to stabilize networked

control systems is determined by the position of the non-minimum phase zeros and the
unstable poles, the networked delay and the packet dropouts probability.

4. Numerical Example. The unstable system model is considered as follows

G(s) =
(s − 2)(s + 1)

s(s − 1)(s + 5)

The transfer function is non-minimum phase and contains an unstable pole at p1 = 1,
and a non-minimum phase zero at z1 = 2.

The network data packet dropouts probability is q ∈ (0 1). The ι1, ι2 and ι3 represent
different networked delays, respectively.

ι1 = 0.1, ι2 = 0.2, ι3 = 0.5

According to the theorem, the limitation value of SNR to stabilize networked control
systems is obtained

J∗ =
18eι

(1 − q)2
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Figure 2. The limitation values of SNR under different networked delays

The limitation value of SNR to stabilize networked control systems under different
packet dropouts probabilities and different networked delays is shown in Figure 2. It can
be seen from Figure 2 that the limitation value of SNR to stabilize networked control
systems is further increased with networked delay and packet dropouts, and it can also be
seen that the smaller the network delay of the network channel, the lower the limitation
value of SNR to stabilize networked control systems.

5. Conclusion. This paper studies the stability of networked control systems based on
the networked delay and the packet dropouts constraints, and we can obtain the limitation
values of SNR to stabilize networked control systems by using spectral decomposition
technique. The limitation value is determined by the position of the non-minimum phase
zeros and the unstable poles, the networked delay and the packet dropouts probability.
The obtained result shows the limitation values of SNR to stabilize networked control
systems which are determined by plant internal structure and networked parameters, no
matter what compensator is adopted, which will be guidance for the design of networked
control systems. An example has been given to illustrate the obtained results.
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