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Abstract. This paper deals with finite time stabilization (FTS) for a class of switched
systems. Based on multiply Lyapunov Krasovskii function and average dwell time ap-
proach, the sufficient conditions on the existence of stabilization controller are established.
Furthermore, the conditions are transformed into LMIs via a novel method. Finally, a ro-
bust state feedback controller is built such that the switched system is finite time bounded.
The simulation experiment illustrates the validities of the obtained results.
Keywords: Switched system, FTS, Model uncertainty, Time-varying delay

1. Introduction. The switched system is an important kind of hybrid systems [1]. It
is widely applied in industrial fields and extensively investigated by researchers [2]. In
particular case, if system state is bounded in specified time interval, then an unstable sys-
tem may meet application requirements [3]. Thus, the concept of finite time boundedness
(FTB) is of great significance. Recently, the FTB and FTS have attracted attention of
researchers. Based on multiply Lyapunov function, Lin et al. analyzed FTB for switched
system with fixed delay [4]. Since time delay usually varies with time, the problems of FTB
and FTS were studied for switched linear systems with time varying-delay [5]. Switching
laws could be divided into time-dependent and state-dependent switching law. Most of
the existing literature discuss FTB and FTS under time-dependent switching law. In [6],
FTS was investigated for switched system under state-dependent switching law. Although
the obtained results in above literature are valid, their mathematical calculations are very
complicated. Zhong and Chen presented a new FTB definition which could simplify the
analysis of FTB and FTS [7]. For switched system, switching behavior has great impact
on system state. Thus, when FTB and FTS are studied, it is necessary to analyze the
effect of switching behavior on state. In [8], the switching behavior’s impact on system
state was analyzed and an FTS controller was built.

In practice, model uncertainty is universal and has great impacts on system state.
However, in most of literature, FTB and FTS are discussed without taking it into account.
In this paper, the problem of FTS is studied for uncertain switched system. Since model
uncertainties exist in system, the obtained results usually are not LMIs. Therefore, a
novel method is presented to convert the obtained results into LMIs. Finally, a robust FTS
controller is built such that the switched system is finite time bounded. The contributions
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in this paper are as follows: (1) a novel method which could convert no-LMIs into LMIs
is presented; (2) the analysis of FTS is greatly simplified by utilizing a new definition on
FTB.

In the rest of the paper, Section 2 will introduce some necessary definitions and lemmas.
The main results are given in Section 3. In Section 4, the validity of the obtained results
is illustrated by an example. Finally, the paper is concluded by Section 5.

2. Problem Statement and Preliminaries. Consider the following switched system:

ẋ(t) =
(
Aσ(t) + ∆Aσ(t)

)
x(t) +

(
Bσ(t) + ∆Bσ(t)

)
x(t− h(t))

+Fσ(t)u(t) +Gσ(t)w(t) 0 ≤ h(t) ≤ d, 0 ≤ t,
(1)

x(t) = φ(t) t ∈ [−d, 0), (2)

where x(t) ∈ Rn represents system state; σ(t) ∈ m denotes the switching law; m =
[1, · · · ,m]; Aσ(t), Bσ(t), Fσ(t) and Gσ(t) are known matrices; ∆Aσ(t) and ∆Bσ(t) denote

uncertainties satisfying
[

∆Aσ(t) ∆Bσ(t)

]
= Dσ(t)Mσ(t)

[
Eσ(t)1 Eσ(t)2

]
; h(t) is time-

varying delay; u(t) represents system input; w(t) is external disturbance; φ(t) denotes the
vector-valued initial function; d is a positive constant. The desired feedback controller is
written as:

u(t) = Hσ(t)x(t). (3)

Our task is to choose appropriate gain matrix Hσ(t) such that system (1) and (2) is
finite-time bounded. A closed-loop system is obtained via combining (1), (2) and (3).

ẋ(t) =
(
Aσ(t) + ∆Aσ(t) + Fσ(t)Hσ(t)

)
x(t) +

(
Bσ(t) + ∆Bσ(t)

)
x(t− h(t))

+Gσ(t)w(t) 0 ≤ h(t) ≤ d, 0 ≤ t,
(4)

x(t) = φ(t) t ∈ [−d, 0). (5)

Some assumptions, definitions and lemmas are firstly introduced.

Assumption 2.1. System (1) and (2) is a continuous system with wT (t)w(t) < γ.

Assumption 2.2. For time-varying delay in system (1) and (2), ḣ(t) ≤ ρ, 0 ≤ h(t) ≤ d,
ρ ≤ 1.

Definition 2.1. [9] For given positive constants C1 < C2, Tf , γ and switching signal
σ(t), if ∥x(t0)∥ ≤ C1 ⇒ ∥x(t)∥ < C2 for t ∈ [0, Tf ], then system (1) and (2) is finite-time
bounded with (C1, C2, Tf , σ(t)), where ∥x∥ =

∑n
i=1 x

2
i ; xi is the ith element of x. Specify

C1 = sup
t∈[−d,0)

∥x(t)∥.

Definition 2.2. For T ≥ t ≥ 0, Nσ(t)(t, T ) denotes the switching number of σ(t) over

(t, T ]. If Nσ(t)(t, T ) ≤ N0 + T−t
τa

holds for τa ≥ 0 and an integer N0 ≥ 0, then τa is called

as average dwell-time [3].

Lemma 2.1. [10] For matrices D, E, and symmetric matrix Y , Y +DFE+ETF TDT < 0
holds for F TF ≤ I if and only if there exists ε > 0 such that Y + εDDT + ε−1ETE < 0.

3. Main Results.

Lemma 3.1. For given d > 0, λ > 0, and ρ ≤ 1, if there exist positive symmetric matrices
Pi, Qi, Ri, J and positive scalars a and b such that

ψ11 PiBi PiGi ET
i,1b Pi

∗ (ρ− 1)Qi 0 ET
i,2b 0

∗ ∗ J 0 0
∗ ∗ ∗ (a− 2b)I 0
∗ ∗ ∗ ∗ −aI

 < 0, (6)
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then 
ψ11 PiBi PiGi ET

i,1 Pi

∗ (ρ− 1)Qi 0 ET
i,2 0

∗ ∗ J 0 0
∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −ε−1I

 < 0, (7)

where ψ11 = (Ai + FiHi)
TPi + Pi(Ai + FiHi) +Qi + dRi − λPi.

Proof: Since a > 0, (a − b)2a−1 ≥ 0. Furthermore, a − 2b ≥ −ba−1b. Then from (6),
we get 

ψ11 PiBi PiGi ET
i,1b Pi

∗ (ρ− 1)Qi 0 ET
i,2b 0

∗ ∗ J 0 0
∗ ∗ ∗ −ba−1bI 0
∗ ∗ ∗ ∗ −aI

 < 0. (8)

Pre-multiplying diag{I, I, I, b−1, I} and post-multiplying diag{I, I, I, b−1, I} to
(8) yield 

ψ11 PiBi PiGi ET
i,1 Pi

∗ (ρ− 1)Qi 0 ET
i,2 0

∗ ∗ J 0 0
∗ ∗ ∗ −a−1I 0
∗ ∗ ∗ ∗ −aI

 < 0. (9)

If letting a = ε−1, then inequality (7) is obtained. This completes the proof.

Remark 3.1. Since ε−1 exists in inequality (7), inequality (7) is not LMIs. Lemma 3.1
could successfully convert inequality (7) into inequality (6) which is LMIs. By introducing
positive scalars a and b, inequality (7) is transformed into LMIs. The whole transforma-
tion process is very concise.

Theorem 3.1. For given positive constants C1, C1 < C2, Tf , γ, ρ ≤ 1, λ, d, and β > 1, if
there exist positive symmetric matrices Pi, Qi, Ri, J , and matrix Ki, and positive scalars
a and b such that 

ψ′
11 PiBi PiGi ET

i,1b Pi

∗ (ρ− 1)Qi 0 ET
i,2b 0

∗ ∗ −J 0 0
∗ ∗ ∗ (a− 2b)I 0
∗ ∗ ∗ ∗ −aI

 < 0, (10)

Pi ≤ βPj, Qi ≤ βQj, Ri ≤ βRj, i ∈ m, j ∈ m, (11)

τa >
Tf ln β

lnC2 + lnλ5 + ln(Φ1 + Φ2)
, (12)

then under the controller u(t) = Hix(t), system (4) and (5) is finite-time bounded un-
der the switching law satisfying (12), where Φ1 = e2λTfλ4Tfγ, Φ2 = eλTf (λ1 + dλ2e

λd +
d2λ3e

λd)C1, ψ
′
11 = AT

i Pi + KT
i + PiAi + Ki + Qi + dRi − λPi, Hi = F−1

i P−1
i Ki, λ1 =

maxλ(Pi), λ2 = maxλ(Qi), λ3 = maxλ(Ri), λ4 = maxλ(J), λ5 = minλ(Pi), maxλ(Pi)
denotes the maximum eigenvalue of Pi, and minλ(Pi) represents the minimum eigenvalue
of Pi.

Proof: Construct multiply Lyapunov Krasovskii function for system (4) and (5).

Vi(t) = xT (t)Pix(t)+

∫ t

t−h(t)

eλ(t−s)xT (s)Qix(s)ds+

∫ 0

−d

∫ t

t+θ

eλ(t−s)xT (s)Rix(s)dsdθ. (13)
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Take the derivative of Vi(t) along the trajectory of system (4) and (5) on t ∈ [tk, tk+1).

V̇i(t) = λVi(t) + ẋT (t)Pix(t) + xT (t)Piẋ(t) − λxT (t)Pix(t) + xT (t)Qix(t)

−
(
1 − ḣ(t)

)
eλh(t)xT (t− h(t))Qix(t− h(t)) + dxT (t)Rix(t)

−
∫ t

t−d

eλ(t−s)xT (s)Rix(s)ds

≤ λVi(t) + ẋT (t)Pix(t) + xT (t)Piẋ(t) + xT (t)(Qi + dRi − λPi)x(t)

−(1 − ρ)xT (t− h(t))Qix(t− h(t))

= λVi(t) +

 x(t)
x(t− h(t))

w(t)

T  ψ11 Pi(Bi + ∆Bi) PiGi

∗ (ρ− 1)Qi 0
∗ ∗ 0

 x(t)
x(t− h(t))

w(t)


= λVi(t) +

 x(t)
x(t− h(t))

w(t)

T 
 ψ′

11 PiBi PiGi

∗ (ρ− 1)Qi 0
∗ ∗ 0

 +

 Pi

0
0

Mi

 ET
1

ET
2

0

T

+

 ET
1

ET
2

0

MT
i

 Pi

0
0

T 
 x(t)
x(t− h(t))

w(t)

 . (14)

According to Lemma 2.1, Lemma 3.1 and (10), we get

V̇i(t) ≤ λV + wT (t)Jw(t),

d

dt
(e−λtVi(t)) < e−λtwT (t)Jw(t).

(15)

Let tk denote the instant of the Kth switching and tk− denote the instant just before
tk. Integrate from tk to t on both sides of (15).

Vi(t) < eλ(t−tk)Vi(tk) +

∫ t

tk

wT (s)eλ(t−s)Jw(s)ds

Vi(t) < βeλ(t−tk)Vi(tk−1) +

∫ t

tk

wT (s)eλ(t−s)Jw(s)ds

Vi(t) < β2eλ(t−tk−1)Vi

(
t(k−1)−

)
+ βeλ(t−tk)

∫ tk
tk−1

wT (s)eλ(t−s)Jw(s)ds

+
∫ t

tk
wT (s)eλ(t−s)Jw(s)ds.

(16)

Assuming the switching times of σ(t) over [0, Tf ] is N . By iterative calculation, it
follows

Vi(t) < βNeλtVi(0) + βNeλ(t−t1)
∫ t1

0
wT (s)eλ(t−s)Jw(s)ds+ · · ·

+βeλ(t−tk)
∫ tk

tk−1
wT (s)eλ(t−s)Jw(s)ds+

∫ Tf

tk
wT (s)eλ(t−s)Jw(s)ds

≤ βNeλtVi(0) + βNeλt
∫ t1

0
wT (s)eλ(t−s)Jw(s)ds+ · · ·

+βNeλt
∫ tk

tk−1
wT (s)eλ(t−s)Jw(s)ds+

∫ Tf

tk
wT (s)eλ(t−s)Jw(s)ds

= βNeλTfVi(0) + βNeλTf
∫ t

0
wT (s)eλ(t−s)Jw(s)ds

< βNeλTfVi(0) + βNe2λTfλmax(J)Tfγ.

(17)

Vi(0) = xT (0)Pix(0) +
∫ 0

−h(0)
e−λsxT (s)Qix(s)ds+

∫ 0

−d

∫ 0

θ
e−λsxT (s)Rix(s)dsdθ

≤ λmax(Pi) sup
−d≤t≤0

{
xT (t)x(t)

}
+ dλmax(Qi)e

λd sup
−d≤t≤0

{
xT (t)x(t)

}
+d2λmax(Ri)e

λd sup
−d≤t≤0

{
xT (t)x(t)

}
= λ1C1 + dλ2e

λdC1 + d2λ3e
λdC1.

(18)
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Vi(t) < βNeλTf
(
λ1 + dλ2e

λd + d2λ3e
λd

)
C1 + βNe2λTfλ4Tfγ. (19)

Vi(t) > xT (t)Pix(t) ≥ λmin(Pi)x
T (t)x(t) ≥ min

i∈M
{λmin(Pi)}xT (t)x(t). (20)

Combining (19) and (20), it is obtained that

xT (t)x(t) <
βNeλTf

(
λ1 + dλ2e

λd + d2λ3e
λd

)
C1 + βNe2λTfλ4Tfγ

λ5

. (21)

On the other hand, it is inferred from (12) that

N <
lnC2 + lnλ5 + ln(Φ1 + Φ2)

ln β
,

βN(Φ1 + Φ2) < C2λ5,

βNeλTf (λ1 + dλ2e
λd + d2λ3e

λd)C1 + βNe2λTfλ4Tfγ

λ5

< C2. (22)

Therefore, xT (t)x(t) < C2. The proof of Theorem 3.1 is completed.

Remark 3.2. For inequality (14), if we only apply Lemma 2.1 to process it, the sufficient
conditions on the existence of robust stabilization controller would also be obtained. How-
ever, the conditions must be not LMIs which imply they could not be solved by MATLAB.
Therefore, we simultaneously apply Lemmas 2.1 and 3.1 to processing inequality (14). In
this way, the sufficient conditions could be presented in form of LMIs.

4. Numerical Example. Consider a switched system with

Subsystem 1: A1 =

[
0.2 −0.4
0 −0.4

]
, B1 =

[
0.1 0
0.1 0.3

]
, F1 =

[
1 0
0 1

]
, G1 =[

0.1 −0.2
0 0.1

]
, D1 =

[
0.1 0.2
−0.2 −0.1

]
, M1 =

[
1 0
0 1

]
, E11 =

[
−0.1 0.1
−0.2 0.1

]
, E12 =[

−0.1 −0.1
1 0.1

]
;

Subsystem 2: A2 =

[
−0.1 0.1
0.1 −0.3

]
, B2 =

[
0.1 0
0.2 0.1

]
, F2 =

[
0.5 0
0 0.5

]
, G2 =[

0.2 −0.1
0.6 0.1

]
, D2 =

[
−0.2 0.1
0.2 0.1

]
, M2 =

[
1 0
0 1

]
, E21 =

[
0.1 0.1
0.2 0.1

]
, E22 =[

0.1 0.1
1 0.1

]
;

Time delay and initial function: φ(t) = [8 2]T , h(t) = 0.5t.
By given conditions, we get ρ = 0.5, d = 5, C1 = 68. Specify λ = 0.1, β = 1.1,

Tf = 10, γ = 1, C2 = 200. Substituting these parameters into (10), (11) and (12) leads

to H1 =

[
−0.656 0.1734
0.1860 −0.1714

]
, H2 =

[
−0.2619 −1.2313
−1.3706 −0.0821

]
, and τa > 0.0989.

The simulation results of this example are shown in Figures 1 and 2. In Figure 1, the
switching number is 38 over t ∈ [0 10]. Thus, τa = 10

38
> 0.0989. In Figure 2, the curve of

∥x(t)∥ is oscillatory, but ∥x(t)∥ < 200 = C2 for t ∈ [0 10]. Therefore, under the designed
controller (3), system (1) and (2) is finite time bounded. The validity of Theorem 3.1
is illustrated by the simulation experiment. Besides, although the system is finite time
bounded, it could be inferred from Figure 2 that the system is not stable over t ∈ [0 10].
Thus, FTB is different from asymptotic stability. There are not any causal relationships
between them.
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Figure 1. Switching law Figure 2. The function of ∥x∥

5. Conclusions. In this paper, the problem of FTS is investigated for uncertain switched
system by utilizing multiply Lyapunov Krasovskii function and average dwell time ap-
proach. The sufficient conditions on the existence of robust stabilization controller are
established and are presented in form of LMIs by using a novel method. In simulation
experiment, a robust FTS controller is successfully constructed such that system (1) and
(2) is finite time bounded. Thus, the validity of obtained result is illustrated. In this
paper, the time delay in system just exists in system state. However, time delay may
exist in system state and switching law simultaneously in practice. This case would lead
to great changes in switching instants and system state. The issue will be investigated in
the future work.
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