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Abstract. The tracking performance of traditional multiple extended target tracking al-
gorithm declines sharply under the unknown measurement noise covariance. So this pa-
per proposes an improved multiple extended target tracking algorithm based on variational
Bayesian cardinality equilibrium multi-objective Bernoulli filtering (VBCEM-OB). Un-
der the unknown measurement noise covariance conditions, the improved algorithm shows
that the measurement is generated by the measurement manufacturer which distributes
on the extended target randomly. The new scheme uses variational Bayesian method to
approximatively solve state joint probability density and measurement noise covariance of
each measurement producer. We can obtain its recursive form to estimate measurement
producer. And we adopt clustering method to get the state of extended target for the state
of measurement producer. Finally, simulation experiments show that the improved algo-
rithm can track extended target with unknown number and unknown measurement noise
covariance. Compared with traditional cardinality equilibrium multi-objective Bernoulli
filtering (CEM-OB), the tracking precision of VBCEM-OB is improved further.
Keywords: Multiple extended target tracking, Joint probability density, Variational
Bayesian, Cardinality equilibrium multi-objective Bernoulli filtering, Recursive form

1. Introduction. In the traditional target tracking [1] field, we also regard target as a
point target. Each target produces a measurement at most. In the practical application,
we are unable to predict the number of target. So it needs to track the unknown number
of multiple target. Multiple target tracking [2] algorithm based on random set theory has
attracted widespread attention which does not have a complex data correlation. Many
researchers have studied the multiple target tracking. Bocca et al. [3] combined real-
time multiple target tracking with RF sensor networks and used RSS measurements on
multiple frequency channels on each link, combining them with a fade level-based weighted
average. Niedfeldt and Beard [4] proposed a recursive random sample consensus algorithm
to robustly estimate the states of an unknown number of dynamic targets. CEM-OB
can track multiple maneuvering targets and evolve to linear Gaussian observation model
within a time.

In order to improve the tracking accuracy, we apply variational Bayesian method into
cardinality equilibrium multi-objective Bernoulli tracking algorithm. Variational Bayesian
[5,6] is an approximate calculation and complex integral method used for Bayesian esti-
mation and machine learning which has a lower computation complexity compared with
traditional sampling methods. After combining variational Bayesian with CEM-OB, we
not only make parameterized approximation for joint posterior density of measurement
noise covariance and measurement producers, but can also obtain the recursive form.
This paper firstly introduces the system model of multi-extended target and variational
Bayesian method at random set filtering framework. Then we deduce Gaussian closed
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solution of multi-extended target tracking under the unknown measurement noise covari-
ance. Compared with traditional CEM-OB, the new scheme can estimate the measurement
noise covariance adaptively. Also it can track the multi-extended target with a higher
precision. The following are the structures of this paper. Section 2 introduces the fun-
damental theory. Section 3 represents the new algorithm’s process and flow. Simulation
and analysis are given in Section 4. The conclusions are drawn in Section 5.

2. Multi-Extended Target System Based on Random Set Filtering Framework.
For extended target, we suppose that at k time, N(k) targets, M(k) measurement. State
set Xk and measurement set Zk are:

Xk = {xk,1, . . . , xx,N(k)} ∈ F (X) (1)

Zk = {zk,1, . . . , zx,M(k)} ∈ F (Z) (2)

where F (X) and F (Z) are state space and measurement space respectively.
Set state equation and measurement equation of one extended target:

xk = Fxk−1 + Gwk (3)

zp
k = Hxp

k + vk (4)

where xk−1 is the target state at k−1 time. F and G are state transition matrix and input
matrix respectively. H is measurement matrix. wk and vk are process noise and measure-
ment noise respectively. Their covariance is Qk and Rk respectively. Rk is unknown. xp

k

is measurement producer. zp
k is the measurement value at k time.

Assuming the random multi-extended target state set is Xk−1 at k − 1 time. And each
xk−1 ∈ Xk−1 will exist next time with a probability of pS,k(xk−1). xk−1 can transfer to
a new state xk with a probability of fk|k−1(xk|xk−1) or disappear with a probability of
1 − pS,k(xk−1). So we can build Bernoulli random finite set for this state: Sk|k−1(xk−1).
Existence probability of Bernoulli set is r = pS,k(xk−1), and probability density function
is p(·) = fk|k−1(·|xk−1). So we can obtain the random finite set of multi-extended target
state:

Xk =

(
∪

xk−1∈Xk−1

Sk|k−1(xk−1)

)
∪ Γk (5)

where Γk denotes multi-Bernoulli random finite set of new produced target.
One extended target has the state: xk ∈ Xk. At k time, it has Mk measurement points

xp
k. p = 1, 2, . . . , Mk. The sets of all the target measurement producer points are: Xp

k .
Each point can be detected with a probability of pD,k(x

p
k) or missed detection with a

probability of 1 − pD,k(x
p
k). Each measurement producer point can generate Bernoulli

random finite set: Θk(x
p
k). Existence probability of measurement producer point is r =

pD,k(x
p
k), and probability density function is p(·) = gk(·|xp

k). Due to the influence of
clutter, sensor will produce some false measurement. They can be seen as Poisson random
set Kk. So the random finite set of multi-extended target measurement is:

Zk =

(
∪

xp
k∈Xp

k

Θk (xp
k)

)
∪ Kk (6)

(6) contains unpredictability and clutter of detection. If the random finite set is inde-
pendent, Zk is a multi-Bernoulli random finite set.

We need to joint estimate the probability density of xp
k and Rk. Supposing their dynamic

models is independent. The predicted joint probability density is:

p
(
xp

k, Rk|zp
1:k−1

)
=

∫
p
(
xp

k|x
p
k−1

)
p (Rk|Rk−1) × p

(
xp

k−1, Rk−1|zp
1:k−1

)
dxp

k−1dRk−1 (7)

where p
(
xp

k|x
p
k−1

)
can be obtained by dynamic equation of system. p (Rk|Rk−1) is difficult

to calculate. According to the Bayesian principle, the updated joint posterior probability
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density p (xp
k, Rk|zp

1:k) can be expressed as:

p (xp
k, Rk|zp

1:k) =
p (zp

k|x
p
k, Rk) p

(
xp

k, Rk|zp
1:k−1

)∫
p (zp

k|x
p
k, Rk) p

(
xp

k, Rk|zp
1:k−1

)
dxp

kdRk

(8)

where p (zp
k|x

p
k, Rk) is likelihood function associated with Rk.

3. Improved Multi-Extended Target Tracking Algorithm Based on VBCEM-
OB and Gaussian Implementation Process. Supposing measurement producer set
is Bernoulli random set, joint posterior probability density of measurement producer point
state xp

k and Rk is parameter of Bernoulli random set. We use Gaussian inverse gamma
distribution to approximate this joint posterior probability density. The measurement of
every time conducts filtering for this distribution and gets the updated xp

k. Then it makes
cluster for xp

k. The center point of this cluster is estimation state of extended target. The
process is this paper’s new algorithm.

The detailed processes of this improved algorithm are as follows.
1) Predicting.
At k − 1 time, the posterior probability density function of measurement producer

random set filter is expressed as:

π
(xp

k−1,Rk−1)
k−1 =

{(
r
(i)
k−1, p

(i)
k−1

(
xp

k−1, Rk−1

))}Mk−1

i=1
(9)

where π
(xp

k−1,Rk−1)
k−1 denotes multi-Bernoulli parameter sets. So the probability density

function of predicted measurement producer random set filter is:

π

(
xp

k|k−1
,Rk|k−1

)
k|k−1

=
{(

r
(i)
P,k|k−1, p

(i)
P,k|k−1(x

p
k|k−1, Rk|k−1)

)}Mk−1

i=1

∪{(
r
(i)
Γ,k, p

(i)
Γ,k (xp

k, Rk)
)}MΓ,k

i=1

(10)

where

r
(i)
P,k|k−1 = r

(i)
k−1

⟨
p

(i)
k−1

(
xp

k−1, Rk−1

)
, pS,k

⟩
(11)

p
(i)
P,k|k−1(x

p
k|k−1, Rk|k−1)

=
⟨
fk|k−1

(
xp

k|k−1

∣∣∣·) pk|k−1

(
Rk|k−1| ·

)
, p

(i)
k−1

(
xp

k−1, Rk−1

)
pS,k

⟩/⟨
p

(i)
k−1

(
xp

k−1, Rk−1

)
pS,k

⟩
(12)

And pS,k denotes measurement producer survival probability, fk|k−1

(
xp

k|k−1

∣∣∣ ·) is multi-

extended target measurement producer state transition probability density function. pk|k−1(
Rk|k−1|·

)
is the dynamic transfer model of Rk.

{(
r
(i)
Γ,k, p

(i)
Γ,k (xp

k, Rk)
)}MΓ,k

i=1
denotes multi-

Bernoulli parameter sets of new target at k time.
2) Updating.
Supposing probability density function of measurement producer random set filter can

be expressed by multi-Bernoulli parameter set:

π

(
xp

k|k−1
,Rk|k−1

)
k|k−1 =

{(
r
(i)
k|k−1, p

(i)
k|k−1

(
xp

k|k−1, Rk|k−1

))}Mk|k−1

i=1
(13)

The posterior probability density function of updated measurement producer random
set filter can be approximated as:

π
(xp

k,Rk)
k ≈

{(
r
(i)
L,k, p

(i)
L,k (xp

k, Rk)
)}Mk|k−1

i=1

∪{(
r∗U,k(z

p
k), p

∗
U,k (xp

k, Rk; z
p
k)
)}

zp
k∈Zk

(14)
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where

r
(i)
L,k = r

(i)
k|k−1

1 −
⟨
p

(i)
k|k−1

(
xp

k|k−1, Rk|k−1

)
, pD,k

⟩
1 − r

(i)
k|k−1

⟨
p

(i)
k|k−1

(
xp

k|k−1, Rk|k−1

)
, pD,k

⟩ (15)

p
(i)
L,k (xp

k, Rk) = p
(i)
k|k−1

(
xp

k|k−1, Rk|k−1

)
· 1 − pD,k

1 −
⟨
p

(i)
k|k−1

(
xp

k|k−1, Rk|k−1

)
, pD,k

⟩ (16)

pD,k denotes detection probability. Zk is observation set. r∗U,k (zp
k) is clutter density

function. Under the independent xp
k and Rk conditions, ηk (xp

k, Rk; z) can be represented
as a new expression: ηk (xp

k, Rk; z) ≈ Qx (xp
k) QR (Rk). Qx (xp

k) is Gaussian distribution.
QR(Rk) is product of the inverse gamma distribution, and their expression is as (13)
and (14). Because Rk is unknown, we need to iterate and update Rk. That can correct
measurement points state and covariance. Before iterating, we must set predicted value
of current time as initial value. If the measurement producer error between previous
iteration and current iteration is less than a certain value. The process will stop. And
the current iteration value is regarded as updated measurement producer state.

4. Simulation Experiment and Analysis. Traditional CEM-OB and this paper’s new
scheme VBCEM-OB are compared for multi-extended target tracking under simulation
implementation clutter background.

Suppose four target movement trajectories are uncrossed. Sampling period T = 1s.
The whole process of observation lasts 40 sampling time. The target state equation and
measurement equation are as Equations (3) and (4). Parameters setting is:

F = [1 T 0 0, 0 1 0 0, 0 0 1 T, 0 0 0 1]T , G = [1/2 0, 1 0, 0 1/2, 0 1]T ,

H = [1 0 0 0, 0 0 1 0]T .

Process noise covariance Qk = diag {σ2
w1, σ

2
w2}, σw1 = σw2 = 0.5. The number of

measurement producer points follow a Poisson distribution. Mean value β = 10. New

target random sets are expressed by multi-Bernoulli parameter sets πΓ =
{(

rΓ, p
(i)
Γ

)}3

i=1
,

and rΓ = 0.02.

p
(i)
Γ (x,R) = N

(
x; m(i)

γ , Pγ

) d∏
l=1

IG

((
σ

(i)
γ,l

)2

, α
(i)
γ,l, β

(i)
γ,l

)
, i = 1, 2, 3 (17)

where m
(1)
γ = [40, 3.05,−40, 0.05]T , m

(2)
γ = [−10, 3.2,−25, 0.08]T , m

(3)
γ = [0, 5.8,−10,

−0.06]T . Pγ = diag{2, 1, 2, 1}. Initial inverse gamma distribution is set as: α0 = β0 = 1.
Degenerate factor ρ = 0.9. Clutter modeling is Poisson random set, mean value λ = 5.

The survival probability and detection probability of target are PS,k = 0.99 and PD,k =
0.98 respectively. The real measurement noise standard deviation is σ = σv1 = σv2 = 1.

For the VBCEM-OB algorithm, Rk = diag {σ2
v1, σ

2
v2} is unknown. For CEM-OB, we

make 100 Monte-Carlo simulation experiments independently and get the results to anal-
ysis when σ = σv1 = σv2 = 0.5, σ = σv1 = σv2 = 1, σ = σv1 = σv2 = 8.

Because this paper adopts multi-extended target tracking algorithm based on random
set, this algorithm considers the corresponding relation between target set and measure-
ment set. In this article, we adopt target number estimation mean value and optimal
sub-pattern assignment distance to evaluate this algorithm. The optimal sub-pattern as-
signment distance can be expressed as:

d̄(c)
p (X,Z) =

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)
(
xi, zπ(i)

)p
+ cp(n − m)

))1/p

(18)
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And p = 2, c = 60. Figure 1 shows the simulation scene. We can know the movement of
target and measurement of clutter in a single experiment. Figure 2 shows the result of GM-
VBCEM-OB (Gaussian Mixture-VBCEM-OB) filter target state. Figure 3 and Figure 4
are the estimation target number comparison of GM-CEM-OB (Gaussian Mixture-CEM-
OB) and GM-VBCEM-OB and comparison of optimal sub-pattern assignment distance
with different measurement noise covariance respectively. When σ = 1, GM-CEM-OB
and GM-VBCEM-OB have the same estimation results. They are also close to the true
value. When σ = 0.8, GM-CEM-OB can produce overestimation. Because measurement
noise covariance is smaller than true value, it results in that measurement producer points
from one target cannot be clustered. And the optimal sub-pattern assignment distance
will increase. When σ = 8, GM-CEM-OB can produce undervaluation due to the big
error of measurement noise covariance. When k = 8s, k = 12s, k = 26s, tracking
error of CEM-OB is bigger. Because new target at the first moment has a low existence
probability, GM-CEM-OB confirms that there exists target at this position when existence
probability is greater than a certain threshold. So tracking the new target will delay a
moment. However, GM-VBCEM-OB can revise measurement producer points existence
probability and not generate delay due to a process of iterative estimation.

Figure 1. Target measurement
and tracks

Figure 2. GM-VBCEM-OB fil-
ter estimation

Figure 3. Comparison of
target estimation number

Figure 4. Comparison of distance
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We can conclude that when the deviation of measurement noise covariance and the
real value is very large, filter precision of GM-CEM-OB declines sharply. However, GM-
VBCEM-OB not only adaptively estimates measurement noise covariance but can track
multiple extended targets with a higher precision.

5. Conclusions. Extended target tracking is different from point target tracking. Multi-
measurement may be from the same target. So we must estimate measurement producer
point state. This paper proposes a new multi-extended target tracking algorithm and
gives Gaussian implementation under the unknown measurement noise covariance and
clutter tracking conditions. This new algorithm conducts joint estimation for probability
density of measurement noise covariance and measurement producer points state. We
use variational Bayesian method to approximate this joint probability density. It can
get measurement producer points state after filter updating. The experiments show that
this new algorithm can track multi-extended target effectively. In the future, we will
study the crossed trajectory based on this paper’s method to solve the target number
undervaluation problem.
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