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Abstract. Forming effective coalitions is a major issue in multiagent systems. Coali-
tion structure generation (CSG) involves partitioning a set of agents into teams, i.e.,
coalitions. The goal of CSG is forming the coalition structure that maximizes the social
surplus, i.e., the sum of utilities obtained by forming coalitions. Recalculating the opti-
mal coalition structure should be avoided when agents leave the coalition structure because
CSG is NP-hard. The target of this research is to form a robust coalition structure con-
sidering agents leaving. The robustness of a coalition structure is a new important aspect.
In this paper, we propose a new CSG problem considering robustness (RCSG−), which
has the property that the utility of any coalitions is non-negative whenever any agents
leave the coalitions. We describe a coalition lattice, a data structure for calculating the
robustness of a coalition, and moreover we present its evaluations. We found that the
solver using the coalition lattice can solve RCSG− faster than CSG even if considering
robustness and the quality of the RCSG− solution is semi-optimal.
Keywords: Robust coalition structure generation, Robustness of coalitions, Coalition
lattice

1. Introduction. Forming effective coalitions is a major issue in multiagent systems.
Coalition structure generation (CSG) involves partitioning a set of agents into teams, i.e.,
coalitions [1, 2]. A coalition structure is a set of coalitions. The goal of CSG is forming
the coalition structure that maximizes the social surplus, the sum of utilities obtained by
forming coalitions.

Algorithms to form the optimal coalition structure for CSG have been proposed. Rah-
wan and Jennings proposed an algorithm based on improved dynamic programming (IDP)
[3]. Rahwan et al. proposed Integer Partition (IP) algorithm that is one example of any-
time algorithms [4]. Rahwan and Jennings proposed an algorithm that consists of IP and
IDP [5]. Michalak et al. proposed a decentralized algorithm for CSG [6].

The robustness of coalition structures is a new important problem. The robustness of
a coalition structure is the property that the social surplus is kept at the maximum when
any agents leave the coalition structure [7]. Robust coalition structure generation (RCSG)
is CSG focused on the robustness of coalition structures. RCSG is tight to find feasible
solutions. Okimoto et al. proposed the framework for robust team formation problem
(RTFP). RTFP is the problem of forming the best possible team to accomplish some tasks
of interest, given some limited resources [8]. Okimoto et al. presented the computational
complexity of RTFP that the order of computational complexity is not increased even if
we consider the robustness of teams.

We focus on the new robustness of coalitions to solve CSG considering robustness
(RCSG−). The goal of RCSG− is forming a semi-optimal coalition structure that consists
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of robust coalitions, we call such a coalition structure a robust solution. A robust coalition
in a robust solution is non-negative whenever any agents leave the coalition. In our
prior study, we developed a coalition lattice that is a novel data structure to find robust
coalitions [9]. In this paper, we demonstrate that the coalition lattice can efficiently find
a robust and semi-optimal solution of RCSG−.

2. RCSG−: Coalition Structure Generation Considering Robustness. The coali-
tion structure generation considering robustness (RCSG−) is one of coalition structure
generation (CSG) considering the robustness of the solution. For A = {a1, a2, . . . , an} as
a set of n agents, a subset of agents, i.e., a coalition, is denoted by S ⊆ A. If a coalition
structure CS is a partition of A, CS satisfies (1).

∀i, j(i ̸= j), Si ∩ Sj = ∅,
∪

Si∈CS

Si = A (1)

Each agent belongs to only one coalition at a time. A characteristic function v : 2A → R
is provided, where R is the cooperation utility among agents in coalition S, denoted by
v(S). The characteristic function v is assumed to be calculated in polynomial time. The
CS utility, which corresponds to the social surplus, is denoted by V (CS). The value of
V (CS) is calculated by (2).

V (CS) =
∑

Si∈CS

v(Si) (2)

The optimal coalition structure CS∗ satisfies (3).

∀CS : V (CS) ≤ V (CS∗) (3)

Let k be a non-negative integer and A′ be a subset of A. Then, CSk is the k-robust
coalition structure, if any coalition structure CS ′ of A \ A′ does not satisfy (4), where
k ≤ |A′| (0 ≤ k ≤ |A| − 2) [7]. In CSG, any coalition structure could be the 0-robust
coalition structure, and 0 ≤ k ≤ |A|−2 because all coalition structures are (|A|−1)-robust
coalition structures.

V (CSk \ A′) < V (CS ′) (4)

|A|Ck patterns must be considered to determine whether the coalition structure is the
k-robust coalition structure CSk. Figure 1 presents an example evaluation of a 1-robust
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Figure 1. The example of the judgment of 1-robust
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coalition structure where the number of agents is four, i.e., |A| = 4. The coalition struc-
ture (a) results from “Agents 1 to 4” (Figure 1). For (a) to be a 1-robust coalition
structure, the social surplus of (a) should be maximum, even if any agents leave (a). If,
for example (Figure 1), “Agent 1” leaves (a), the social surplus would result from the
coalition structures formed by “Agents 2 to 4.” In Figure 1, the coalition structures (b),
(c), (d), and (e) are coalition structures of “Agents 2 to 4.” The social surplus of (a) with-
out “Agent 1” should be more than the social surplus of (b), (c), (d), and (e). Moreover,
the social surplus of (a) after any other agent’s withdrawal should be the greatest.

The goal of RCSG− is forming a semi-optimal coalition structure CS+
k that consists

of robust coalitions. The coalition structure CS+
k is semi-optimal whenever any k agents

leave from the coalition structure. We define the goal of RCSG− as follows:

arg max
CS+

k

V (CS+
k ) where ∀S ∈ (CS+

k \ A′), v(S)−
∑
ai∈S

v({ai}) > 0, k ≥ |A′|

3. Robustness of Coalitions. Let a be an agent. The utility of coalition {a} is denoted
by v({a}). In this study, a coalition SP is positive if satisfying (5), and a coalition SN is
negative if satisfying (6). A coalition of a single agent is positive exceptionally.

v(SP )−
∑

ai∈SP

v({ai}) > 0 (5)

v(SN)−
∑

ai∈SN

v({ai}) < 0 (6)

CSG and RCSG− are the same with respect to forming the coalition structure that
increases the social surplus. For example, let CS1 be a coalition structure including nega-
tive coalition SN1 = {a1, a4}, and let CS2 be a coalition structure including {{a1}, {a4}}
instead of SN1. Then V (CS1) is less than V (CS2). A coalition structure including one or
more negative coalitions would not be optimal. In CSG, we can find the optimal coali-
tion structure efficiently by considering only positive coalitions. In RCSG−, an additional
element is needed, i.e., we need to consider the robustness of coalition structures. Compu-
tational complexity becomes clearly more enormous in RCSG− than in CSG. Because we
need to consider all cases that any k agents leave the coalition structure CS to distinguish
whether CS is the robust solution or not.

At most, k agents leave one of the coalitions in CS. Let S ′ be a subset of S, where S ′ is
formed by remaining agents except k agents in S. We should consider the utility of S ′. In
this study, we focus on the robustness of coalitions to find the robust solution efficiently.
Now, we define that the robustness of S is the property that S ′ is not a negative coalition
if any agents leave S. The value of k, i.e., the robustness of coalitions, is calculated by
(7). In (7), S∗

N ⊂ SP satisfies ∀SN ⊂ SP : |S∗
N | ≥ |SN |. Then we call SP a k-robust

coalition. When S is a k-robust coalition, S ′ (⊂ S) is not a negative coalition if any k
agents leave S. We can find the robust solution in RCSG− by using k-robust coalitions.

k = |SP | − |S∗
N | − 1 (7)

4. Coalition Lattice. To calculate the robustness of coalitions, it is necessary to clarify
the inclusive relation of each coalition. We proposed the coalition lattice that is a new
data structure for the robustness of coalitions [9]. The coalition lattice is similar to
the Hasse diagram. In the coalition lattice, a node represents a coalition described by
a characteristic function. The coalition lattice is the data structure that connects two
nodes through an inclusive relationship represented by an arc.
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S v(S) P/N

{a1} 1 P
{a2} 5 P
{a3} 3 P
{a4} 4 P
{a1, a2} 8 P
{a1, a3} 5 P
{a1, a4} 3 N
{a2, a3} 5 N
{a2, a4} 4 N
{a3, a4} 9 P
{a1, a2, a3} 10 P
{a1, a2, a4} 7 N
{a1, a3, a4} 10 P
{a2, a3, a4} 8 N
{a1, a2, a3, a4} 19 P

{1,2,3,4}

{ }

{4}{3}{2}{1}

{1,2} {1,3} {3,4}{1,4} {2,3} {2,4}

{1,2,3} {1,3,4}{1,2,4} {2,3,4}

- - -

0 - 0 -

0 E.g. { a1, a4 }  {1, 4}

Figure 2. Left: a characteristic function, Right: a coalition lattice

4.1. Data structure. The left side of Figure 2 offers a summary of the characteristic
functions when |A| = 4 (A = {a1, a2, a3, a4}), as an example. The corresponding coalition
lattice is presented in the right side of Figure 2. In the coalition lattice, the minimum
upper bound is assumed the whole coalition, whereas the maximum lower bound would
be the empty set. The coalition lattice divides the agents in four levels with the number
of agents, as in the right side of Figure 2. In the right side of Figure 2, a circular node
represents a positive coalition, and a rectangle node shows a negative coalition. The left
lower value of each node represents the robustness of the coalition. For example, if the
value of a coalition is zero, then the coalition allows no agents to leave. The robustness of
each coalition is calculated easily by constructing a coalition lattice, as in the right side
of Figure 2, which provides the inclusive relationship of each individual coalition.

We describe a method to calculate the robustness of each coalition on the coalition
lattice. Let CS∗

1 be the optimal coalition structure where CS∗
1 includes the coalition

{a4}. When a4 leaves CS∗
1 , V (CS∗

1 \ {a4}) is kept maximum because other coalitions
in CS∗

1 are not affected by the secession of a4 at all. Therefore, the robustness of the
coalition formed by a single agent is infinity, i.e., k = ∞. In addition, the robustness of
the negative coalition is k = −∞ as a matter of convenience. When a negative coalition
exists in the child node of the positive coalition SP on the coalition lattice, the robustness
of SP is calculated by (7). If no negative coalitions exist in the child nodes of SP , kmin is
the minimum value of k in the child nodes of SP , and Smin is the coalition with kmin, then
the difference in the number of agents between SP and Smin is M , where M = |SP |−|Smin|.
Even if M agents leave SP , the SP without M agents is not a negative coalition. Therefore,
the robustness of SP is calculated by (8), when there are no negative coalitions in the
child nodes of SP .

k = kmin + |SP | − |Smin| (8)

4.2. Algorithm. We describe an algorithm to construct the coalition lattice in the left
side of Figure 3. In a coalition lattice CL, A represents the set of agents, S the coalition,
and l the robustness value. CL is a set of ⟨i, S, l⟩. ∀S ⊂ A are sorted, in ascending order,
by the number of agents in S. The index i identifies the coalitions.

CL is initialized in lines 1 to 4 in the left side of Figure 3. In line 3, the function
GetS(i) returns S corresponding to i. The value of i from 1 to |A| represents the case
where S is formed by a single agent. In a coalition lattice, the robustness of the coalitions
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Require: k ≥ 0
Ensure: Necessary parts of CL
1: CL← {}
2: for i = 0 to |A| do
3: CL← CL ∪ {⟨i, GetS(i), +∞⟩}
4: end for
5: for i = |A|+ 1 to 2|A| − 1 do
6: S ← GetS(i)
7: if S is positive then
8: CL← CL ∪ {⟨i, S, Calculate(S)⟩}
9: else if S is negative then

10: CL← CL ∪ {⟨i, S,−∞⟩}
11: end if
12: end for
13: CL← {⟨i, S, l⟩}|k ≤ l, ⟨i, S, l⟩ ∈ CL}

Require: |S| > 1
Ensure: Value of robustness of S
1: lmin ← +∞
2: for all ⟨Schild, lchild⟩ ∈ Child(S) do
3: if Schild is negative then
4: l′ ← |S| − |Schild| − 1
5: else
6: l′ ← lchild + |S| − |Schild|
7: end if
8: if lmin > l′ then
9: lmin ← l′

10: end if
11: end for

Figure 3. An algorithm to construct a coalition lattice

that are formed by a single agent is +∞. For the coalition with more than two agents, a
coalition lattice is constructed in bottom up (as described in lines 5 to 12 in the left side
of Figure 3). For all coalitions, the algorithm distinguishes S whether it is a positive or
negative coalition, and adds each node to CL in lines 7 to 11. If S is a positive coalition,
the algorithm adds the node to CL after calculating the robustness of S by the function
Calculate(S) (described in the right side of Figure 3). If S is a negative coalition, the
algorithm adds the node to CL and the robustness of S is −∞ in line 10. The function
Calculate(S) checks all child nodes of S and calculates the robustness of S by (7) or (8).
Finally, the function Calculate(S) returns the minimum value of the robustness as the
robustness of S.

The required coalitions to find the robust solution are not all coalitions in a coalition
lattice. To find the robust solution, we should use only the coalitions that the robustness
is greater than k. In line 13, the algorithm prunes the extra part of the coalition lattice
by using the value of k.

Now, we describe an RCSG− solver by using the coalition lattice that consists of three
steps. First, the RCSG− solver generates the coalition lattice from a given problem. The
coalition lattice can be used to find robust coalitions. Second, the solver makes a new
CSG problem from the only robust coalitions, it reduces the search space dramatically.
Finally, the solver can solve the new CSG problem by using an ordinary CSG solver.
The optimal solution of the new CSG problem is the robust solution of RCSG−, i.e., a
semi-optimal solution.

5. Evaluation. We compared the execution time and the solution quality of RCSG− with
CSG. We implemented a CSG solver based on Branch and Bound algorithm to find CS∗

and an RCSG− solver based on the coalition lattice and the same CSG solver.
We examined the execution time for solving CSG and RCSG− where |A| = 15, 16, . . . , 22

and the robustness k = 3. The environment was 3.5GHz 6-Core Intel Xeon E5, 32GB
memory, Java 1.8.0 31, and OS X 10.10.3. The result is shown in Figure 4. The vertical
axis indicates the average execution time of 100 iterations and the horizontal axis indicates
|A|. Notably, the execution time of both solvers is very high, when there are a lot of
coalitions. As |A| increases, the difference between the execution times of CSG and
RCSG− solvers is decreasing because the RCSG− solver converts a problem into the
smaller problem by pruning non-robust coalitions on the coalition lattice. For example,
the proposed method, i.e., the RCSG− solver, was 3.64 times faster than the normal CSG
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Figure 4. The comparison of execution times

solver even if considering robustness where |A| = 22. Therefore, we suppose that the
RCSG− solver outperforms the CSG solver where |A| ≥ 23.

We also evaluated the quality of RCSG− solutions defined as V (CS+
k )/V (CS∗). We

generated 5,000 problems, |A| = 15 and the robustness k = 3, and compared between the
solutions of CSG and RCSG−. The average quality was 0.913. Therefore, the quality of
the RCSG− solution is semi-optimal.

6. Conclusions. We found that the RCSG− solver using the coalition lattice can solve
RCSG− faster than CSG even if considering robustness and the RCSG− solution is semi-
optimal. We described the coalition lattice, a data structure that enables the calculation
of the robustness of each coalition in RCSG−. The coalition lattice represents our new
robustness for CSG, a robust coalition is non-negative whenever any agents leave from the
coalition. A k-robust coalition consists of at least (k − 1)-robust coalitions in the lattice.
The coalition lattice can be built from the bottom-up.

Our experiments demonstrate that the proposed method, the RCSG− solver using the
coalition lattice, can efficiently find semi-optimal solution. The proposed method was
3.64 times faster than a normal CSG solver even if considering robustness where |A| = 22.
Moreover, the quality of solutions for RCSG− was 0.913 where |A| = 15. The coalition
lattice has the potential to overcome weakness of CSG.
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