
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 1, January 2016 pp. 181–187

MINIMIZING THE TOTAL STRETCH IN TWO PARALLEL
MACHINES WITH GOS LEVELS

Jang Rae Lee1 and Suk-Hun Yoon2,∗

1Department of Industrial Engineering
Seoul National University

No. 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
future33@nate.com

2Department of Industrial and Information Systems Engineering
Soongsil University

No. 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Korea
∗Corresponding author: yoon@ssu.ac.kr

Received June 2015; accepted August 2015

Abstract. We consider a non-preemptive scheduling problem to minimize the total
stretch in two parallel machines with two grade of service (GoS) levels. The stretch
of a job is defined as the ratio of the flow time to its processing time. When jobs have
different release times, the problem of minimizing the total stretch is NP-complete even
for a single machine. In this paper, we assume that the release times of jobs are all
zeros. We provide some optimality conditions and show that the problem can be solved
in polynomial time.
Keywords: Non-preemptive scheduling, Parallel machines, Total stretch, Grade of ser-
vice

1. Introduction. In service industries, it is a common practice that service providers
offer differential services to special customers. For example, in a superstore like Wal-
Mart, some counters are reserved for customers with small purchases to accelerate the
checkout process, which reduces waiting times of the customers. The stretch is defined as
the ratio of a job response time to its processing time, that is, a special case of weighted
flowtime, in which the weight is defined by reciprocal of the job processing time. The
stretch measure relates the customers’ waiting times to their demands. It reflects their
psychological expectations that they are willing to wait longer for larger requests [1].

For several decades, grade of service (GoS) models have been studied extensively.
Hwang et al. [2] considered parallel machines with job and machine GoS levels to mini-
mize the makespan, where jobs can be processed by lower or the same GoS level machines.
They proposed an algorithm with worst case performance of 5/4 and 2 − 1/(m − 1) for
m = 2 and m ≥ 3, respectively. Luo et al. [3] considered semi-online scheduling prob-
lems on parallel machines with two GoS levels and unit processing time to minimize the
makespan. Lee et al. [4] considered semi-online scheduling problems on parallel machines
under GoS eligibility constraints to minimize the makespan. They provided lower bounds
of the competitive ratio for any algorithm. Online and semi-online versions of minimiz-
ing the makespan in two machines with different GoS levels have been investigated [5-8].
Bender et al. [9] proposed offline and online algorithms to minimize maximum stretch in
a single processor. Bender et al. [10] proposed PTAS for minimizing the total stretch.
Legrand et al. [11] showed that the minimization problems of the total stretch in single
machine without preemption and unrelated parallel machines under the divisible load are
NP-complete.

181

182 J. R. LEE AND S.-H. YOON

In this paper, we consider minimization of the total stretch in parallel machines. In
Section 2, we define our model and present some notations and assumptions. In Section
3, we show that a two-machine problem under two GoS levels is polynomially solvable.
Finally, we provide the summary and concluding remarks.

2. Notations and Problem Definition. Let J = {J1, J2, J3, · · · , Jn} be the job set.
Let pj be the processing time of job Jj, rj its release time, aj its starting time, Cj

its completion time, and Fj its flow time. Then, the stretch of job Jj is defined by
sj = (Cj − rj) /pj or sj = Fj/pj. Assume that the release times of jobs are all zeros.
Therefore, sj = Cj/pj. In parallel machines with GoS levels, job Jj and machine Mi are
labeled with GoS levels g(Jj) and g(Mi), respectively. Job Jj is allowed to be processed
on machine Mi only when g(Jj) ≥ g(Mi).

We consider two parallel identical machines with two GoS levels, where GoS levels are
classified by job processing times. If a job processing time is greater than a constant c,
the job is entitled to GoS level 1 and otherwise to GoS level 2.

3. Two Machines with GoS Levels to Minimize Total Stretch. Let g(Mi) = i and
Gj = {Jk|g(Jk) = j, k = 1, 2, · · · , n}, for i, j = 1, 2. Then, jobs in G1 should be processed
only on machine M1, but jobs in G2 either on machine M1 or M2.

Lemma 3.1. There exist no unforced idle times on each machine in an optimal schedule.

Lemma 3.2. An optimal job sequence on each machine is SPT.

Processing times of jobs in G1 should be larger than in G2. Lemma 3.2 implies that
jobs in G2 should be processed before jobs in G1 on machine M1. Partition G2 into three
subsets X, Y and B such that the starting time of G1 is less than or equal to that of
B. Locate X before G1 and Y before B. Let aB be a starting time of the first job in B.
Define ⟨B⟩ as the SPT sequence for job set B.

Lemma 3.3. In an optimal schedule σ = (σ1, σ2), where σ1 = ⟨X ∪ G1⟩, σ2 = ⟨Y ∪ B⟩
and aG1 ≤ aB, if aG1 < aB,

∑
t∈G1

1
pt

≥
∑

t∈B
1
pt

.

Proof: By contradiction. Suppose that
∑

t∈G1

1
pt

<
∑

t∈B
1
pt

. If we interchange ⟨X⟩
and ⟨Y ⟩, there is no change of stretch for jobs in X ∪Y . Then the change of total stretch
is calculated as follows.

∆S =
∑

t∈G1

∆st +
∑

t∈B
∆st = (aB − aG1)

(∑
t∈G1

1

pt

−
∑

t∈B

1

pt

)
< 0.

Thus, the schedule is not optimal. This completes the proof.

Lemma 3.4. In an optimal schedule σ = (σ1, σ2), where σ1 = ⟨X ∪ G1⟩, σ2 = ⟨Y ∪ B⟩
and aG1 ≤ aB, the smallest processing time of jobs in B is greater than or equal to the
largest processing time of job in X ∪ Y .

Proof: Since σ2 = ⟨Y ∪ B⟩ is SPT, the processing times of jobs in B should be greater
than or equal to those of jobs in Y .

Let Ju be the last job in ⟨X⟩ and Jv be the first job in ⟨B⟩. By contradiction. Suppose
that pu > pv. Interchanging jobs Ju and Jv reduced to the stretch change as follows:

∆S =
∑

t∈X−{Ju}
∆st+

∑
t∈Y

∆st +
∑

t∈G1

∆st+
∑

t∈B−{Jv}
∆st + ∆su + ∆sv.

Since the stretches of X − {Ju} and Y are not changed,

∆S = (pv − pu)
∑

t∈G1

1

pt

+ (pu − pv)
∑

t∈B−{Jv}

1

pt

+
aB − au

pu

+
au − aB

pv

= (pv − pu)

[∑
t∈G1

1

pt

−
∑

t∈B−{Jv}

1

pt

]
+ (aB − au)

[
1

pu

− 1

pv

]
.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.1, 2016 183

Since
∑

t∈B−{Jv}
1
pt

<
∑

t∈B
1
pt

≤
∑

t∈G1

1
pt

, ∆S < 0.

This completes the proof.

Lemma 3.5. In an optimal schedule σ = (σ1, σ2), where σ1 = ⟨X ∪ G1⟩, σ2 = ⟨Y ∪ B⟩
and aG1 ≤ aB, let the last job in the sequences ⟨X⟩ and ⟨Y ⟩ be Js and Jt. Then, 0 ≤∑

k∈G1

1
pk

−
∑

k∈B
1
pk

≤ min
{

1
ps

, 1
pt

}
.

Proof: By contradiction. Assume that
∑

k∈G1

1
pk
−
∑

k∈B
1
pk

> min
{

1
ps

, 1
pt

}
. If ps > pt,

the total stretch can be reduced by interchanging Js and Jt, and thus the schedule is not
optimum. We only consider ps ≤ pt.

Case 1. as ≥ at.
Move Js before Jt to construct a new schedule σ′ = (σ′

1, σ
′
2), where σ′

1 = ⟨X − {Js} , G1⟩
and σ′

2 = ⟨Y ∪ {Js} ∪ B⟩. Then the change of the total stretch is calculated as below:

∆S =
∑

k∈G1

∆sk + ∆ss + ∆st +
∑

k∈B
∆sk

= − ps

∑
k∈G1

1

pk

+ (at − as)
1

ps

+ ps
1

pt

+ ps

∑
k∈B

1

pk

= ps

(
1

pt

−
∑

k∈G1

1

pk

+
∑

k∈B

1

pk

)
+ (at − as)

1

ps

< 0.

Case 2. as < at.
Interchange ⟨X⟩ with ⟨Y − {Jt}⟩ to construct a new schedule σ′′ = (σ′′

1 , σ
′′
2), where

σ′′
1 = ⟨Y − {Jt} , G1⟩ and σ′′

2 = ⟨X ∪ {Jt} ∪ B⟩. Then the change of the total stretch is
calculated as below:

∆S =
∑

k∈G1

∆sk + ∆st +
∑

k∈B
∆sk

= (at − aG1)
∑

k∈G1

1

pk

+ (aG1 − at)
1

pt

+ (aG1 − at)
∑

k∈B

1

pk

= (aG1 − at)

(
1

pt

−
∑

k∈G1

1

pk

+
∑

k∈B

1

pk

)
< 0.

Thus, the schedule is not optimum. This completes the proof.

Lemma 3.6. Suppose that jobs in G1 ∪ G2 are ordered by the SPT-rule and let n1

be the number of jobs in G2, i.e., J[j] ∈ G2, j = 1, 2, · · · , n1 and J[j] ∈ G1, j =
n1 + 1, n2 + 2, · · · , n. For an optimal schedule σ = (σ1, σ2), where σ1 = ⟨X ∪ G1⟩,
σ2 = ⟨Y ∪ B⟩ and aG1 ≤ aB, a job sequence B =

{
J[k], J[k+1], · · · , J[n 1]

}
, where k =

arg min
t

{∑n1

i=t
1

p[i]
≤
∑n

j∈G1

1
pj

}
satisfies 0 ≤

∑
k∈G1

1
pk

−
∑

k∈B
1
pk

< min
{

1
ps

, 1
pt

}
, where

ps and pt are the processing times of the last job in sequences ⟨X⟩ and ⟨Y ⟩, respectively.

Algorithm SPT-LS
Step 1. Construct a list of jobs by the SPT-rule.
Step 2. Assign a job to the least loaded machine according to the list.
Algorithm GoS[c]
On parallel identical machines with two GoS levels,
Step 1. Initialization
Sort jobs with GoS level 1 by the SPT-rule and label the set of jobs by G1. Likewise,

sort jobs with GoS level 2 by the SPT-rule and label the set of jobs by G2.
Let n be the number of jobs and n1 be the number of jobs in G2.
Step 2. Select jobs in G2 for B.
(a) Calculate

∑
j∈G1

1
pj

.

(b) For jobs in G2, let k = arg min
t

{∑n1

i=t
1

p[i]
≤
∑

j∈G1

1
pj

}
.

184 J. R. LEE AND S.-H. YOON

(c) Set B =
{
J[k], J[k+1], · · · , J[n1]

}
.

Step 3. Order jobs for Machines M1 and M2.
(a) If G2 − B is empty, go to Step 4.
(b) If the number of jobs in G2 − B is odd, assign the first job in G2 − B to machine

M2 and apply Algorithm SPT-LS for the remaining jobs in G2 − B until there is no job
in G2 − B.

(c) If the number of jobs in G2 − B is even, assign the first job in G2 − B to machine
M1 and apply Algorithm SPT-LS for the remaining jobs in G2 − B until there is no job
in G2 − B.

(d) Label jobs for machine M1 by X and jobs for machine M2 by Y .
Step 4. Sequence jobs for machines M1 and M2. Attach sequence ⟨G1⟩ after ⟨X⟩ and

sequence ⟨B⟩ after ⟨Y ⟩.
Numerical Example. Consider two identical machines with two GoS levels. Assume

that if a job processing time is greater than 3, the job is entitled to GoS level 1 and
otherwise to GoS level 2. The processing times and GoS levels of jobs are provided in the
following table.

Table 1. The processing times and GoS levels of jobs

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

pj 4 1 3 1 5 3 2 2 4 1
g(Jj) 1 2 2 2 1 2 2 2 1 2

Step 1. Set G1 = {J1, J9, J5}, G2 = {J2, J4, J10, J7, J8, J3, J6}, n = 10, and n1 = 7.

Step 2. Since
∑

j∈G1

1
pj

= 0.7, k = min
t

{∑7
i=t

1
p[i]

≤ 0.7
}

= 6.

Therefore, B =
{
J[6], J[7]

}
= {J3, J6}.

Step 3. Since the number of jobs in G2−B is odd, we assign first job in G2, i.e., J[1] = J2,
to machine M2 and remaining jobs in G2 − B to two machines by Algorithm SPT-LS.

Then X = {J4, J7} and Y = {J2, J10, J8}.
Step 4. Attach sequence ⟨G1⟩ after ⟨X⟩ = ⟨J4, J7⟩ and attach sequence ⟨B⟩ after ⟨Y ⟩ =

⟨J2, J10, J8⟩. The optimal sequence is obtained in Figure 1.

Figure 1. Optimal sequence

Theorem 3.1. Algorithm GoS[c] is optimal for P2|GoS[c]|
∑n

j=1 sj.

Proof: Let σ = (σ1, σ2) be a schedule constructed by Algorithm GoS[c], where σ1 =
⟨X ∪ G1⟩, σ2 = ⟨Y ∪ B⟩ and aG1 ≤ aB. Suppose σ = (σ1, σ2) is not an optimal schedule.
Since the jobs in each machine are ordered by SPT, the total stretch cannot be improved
by interchanging two jobs in the same machine. Thus, we consider only interchanging two
jobs in the different machines. Let Ji,[k] be the kth job in the sequence σi, i = 1, 2. Let
pi,[k] and ai,[k] be the processing time and starting time of job Ji,[k], respectively.

Interchange J1,[u] and J2,[v], where 1 ≤ u ≤ |X|, 1 ≤ v ≤ |Y ∪ B|. If p1,[u] = p2,[v], the
total stretch is not changed. Thus, we assume that p1,[u] ̸= p2,[v].

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.1, 2016 185

Then, the change of total stretch is calculated as below:

∆S = ∆s1,[u] + ∆s2,[v] +

|X∪G1|∑
k=u+1

∆s1,[k] +

|Y ∪B|∑
k=v+1

∆s2,[k]

Case 1. J2,[v] ∈ B. Note that u < v, p1,[u] < p2,[v], a1,[u] < a2,[v].

∆S =
(
a2,[v] − a1,[u]

)(1

p1,[u]

− 1

p2,[v]

)
+
(
p2,[v] − p1,[u]

)|X∪G1|∑
k=u+1

1

p1,[k]

−
|Y ∪B|∑
k=v+1

1

p2,[k]


>
(
a2,[v] − a1,[u]

)(1

p1,[u]

− 1

p2,[v]

)
+
(
p2,[v] − p1,[u]

)(∑
k∈G1

1

pk

−
∑
k∈B

1

pk

)

Since
(
a2,[v] − a1,[u]

) (
1

p1,[u]
− 1

p2,[v]

)
> 0 and

(
p2,[v] − p1,[u]

)(∑
k∈G1

1
pk

−
∑
k∈B

1
pk

)
≥ 0, ∆S >

0.
Case 2. J2,[v] ∈ Y .

∆S = ∆s1,[u] + ∆s2,[v] +

|X|∑
k=u+1

∆s1,[k] +

|Y |∑
k=v+1

∆s2,[k] +
∑
k∈G1

∆sk +
∑
k∈B

∆sk

=
(
a2,[v] − a1,[u]

)(1

p1,[u]

− 1

p2,[v]

)

+
(
p2,[v] − p1,[u]

) |X|∑
k=u+1

1

p1,[k]

−
|Y |∑

k=v+1

1

p2,[k]

+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk


In Algorithm GoS[c], if the number of remaining jobs for X ∪Y is even, jobs are assigned
first to X, and otherwise first to Y .

Case 2.1. |X| = |Y |. Note that p1,[k−1] ≤ p2,[k−1] ≤ p1,[k], k = 2, 3, · · · , |X|.
Case 2.1.1. u > v. Note that a1,[u] > a2,[v], p1,[u] > p2,[v].

|X|∑
k=u+1

1

p1,[k]

−
|Y |∑

k=v+1

1

p2,[k]

+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

=

|X|∑
k=u+1

(
1

p1,[k]

− 1

p2,[k−1]

)
−

u−1∑
k=v+1

1

p2,[k]

− 1

p2,|Y |
+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

< 0,

since
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

< 1
p2,|Y |

by Lemma 3.6.

Thus, ∆S > 0, since
(
p2,[v] − p1,[u]

)(|X|∑
k=u+1

1
p1,[k]

−
|Y |∑

k=v+1

1
p2,[k]

+
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

)
> 0

and (a2,[v] − a1,[u])
(

1
p1,[u]

− 1
p2,[v]

)
> 0.

Case 2.1.2. u = v. Note that a1,[u] ≤ a2,[v], p1,[u] < p2,[v].

|X|∑
k=u+1

1

p1,[k]

−
|Y |∑

k=v+1

1

p2,[k]

+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

=

|X|∑
k=u+1

(
1

p1,[k]

− 1

p2,[k]

)
+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

≥ 0

186 J. R. LEE AND S.-H. YOON

Thus, ∆S ≥ 0, since
(
p2,[v] − p1,[u]

)(|X|∑
k=u+1

1
p1,[k]

−
|Y |∑

k=v+1

1
p2,[k]

+
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

)
≥ 0 and(

a2,[v] − a1,[u]

) (
1

p1,[u]
− 1

p2,[v]

)
≥ 0.

Case 2.1.3. u < v. Note that a1,[u] < a2,[v], p1,[u] < p2,[v].

|X|∑
k=u+1

1

p1,[k]

−
|Y |∑

k=v+1

1

p2,[k]

+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

=
v∑

k=u+1

1

p1,[k]

+

|X|∑
k=v+1

(
1

p1,[k]

− 1

p2,[k]

)
+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

> 0.

Thus, ∆S > 0, since
(
p2,[v] − p1,[u]

)(|X|∑
k=u+1

1
p1,[k]

−
|Y |∑

k=v+1

1
p2,[k]

+
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

)
> 0 and

(a2,[v] − a1,[u])
(

1
p1,[u]

− 1
p2,[v]

)
> 0.

Case 2.2. |X| = |Y | − 1. Note that p1,[k] ≤ p2,[k+1] ≤ p1,[k+1], k = 1, 2, · · · , |X| − 1.
Case 2.2.1. u > v Note that a1,[u] > a2,[v], p1,[u] > p2,[v].

|X|∑
k=u+1

1

p1,[k]

−
|Y |∑

k=v+1

1

p2,[k]

+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

=

|X|∑
k=u+1

(
1

p1,[k]

− 1

p2,[k]

)
−

u∑
k=v+1

1

p2,[k]

− 1

p2,|Y |
+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

< 0,

since
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

< 1
p2,|Y |

by Lemma 3.6.

Thus, ∆S > 0, since
(
p2,[v] − p1,[u]

)(|X|∑
k=u+1

1
p1,[k]

−
|Y |∑

k=v+1

1
p2,[k]

+
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

)
> 0

and
(
a2,[v] − a1,[u]

) (
1

p1,[u]
− 1

p2,[v]

)
> 0.

Case 2.2.2. u = v. Note that a1,[u] ≥ a2,[v], p1,[u] > p2,[v].

|X|∑
k=u+1

1

p1,[k]

−
|Y |∑

k=v+1

1

p2,[k]

+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

=

|X|∑
k=u+1

(
1

p1,[k]

− 1

p2,[k]

)
− 1

p2,|Y |
+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

< 0,

since
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

< 1
p2,|Y |

by Lemma 3.6.

Thus, ∆S > 0, since
(
p2,[v] − p1,[u]

)(|X|∑
k=u+1

1
p1,[k]

−
|Y |∑

k=v+1

1
p2,[k]

+
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

)
> 0

and
(
a2,[v] − a1,[u]

) (
1

p1,[u]
− 1

p2,[v]

)
≥ 0.

Case 2.2.3. u < v. Note that a1,[u] < a2,[v], p1,[u] < p2,[v].

|X|∑
k=u+1

1

p1,[k]

−
|Y |∑

k=v+1

1

p2,[k]

+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

=
v−1∑

k=u+1

1

p1,[k]

+

|X|∑
k=v

(
1

p1,[k]

− 1

p2,[k+1]

)
+
∑
k∈G1

1

pk

−
∑
k∈B

1

pk

≥ 0.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.1, 2016 187

Thus, ∆S > 0, since
(
p2,[v] − p1,[u]

)(|X|∑
k=u+1

1
p1,[k]

−
|Y |∑

k=v+1

1
p2,[k]

+
∑

k∈G1

1
pk

−
∑
k∈B

1
pk

)
≥ 0 and(

a2,[v] − a1,[u]

) (
1

p1,[u]
− 1

p2,[v]

)
> 0.

For all cases, the total stretch cannot be decreased. This completes the proof.

4. Conclusions. We consider a minimization problem of the total stretch in parallel
machines, in which release times of jobs are assumed zeros. This is a special case of
the NP-hard total weighted completion times when the weights are the inverse of job
processing times. For the case of two machines with two GoS levels where the levels are
determined by job size, we propose a polynomial time algorithm.

REFERENCES

[1] S. Muthukrishnan, R. Rajaraman, A. Shaheen and J. Gehrke, Online scheduling to minimize average
stretch, SIAM Journal on Scientific Computing, vol.34, no.2, pp.433-452, 2005.

[2] H. C. Hwang, S. Y. Chang and K. Lee, Parallel machine scheduling under a grade of service provision,
Computers and Operations Research, vol.31, pp.2055-2061, 2004.

[3] T. Luo, Y. Xu, L. Luo and C. He, Semi-online scheduling with two GoS levels and unit processing
time, Theoretical Computer Science, vol.521, pp.62-72, 2014.

[4] K. Lee, H. C. Hwang and K. Lim, Semi-online scheduling with GoS eligibility constraints, Interna-
tional Journal of Production Economics, vol.153, pp.204-214, 2014.

[5] Y. W. Jiang, Online scheduling on parallel machines with two GoS levels, Journal of Combinatorial
Optimization, vol.16, pp.28-38, 2008.

[6] J. Park, S. Y. Chang and K. Lee, Online and semi-online scheduling of two machines under a grade
of service provision, Oper. Res. Lett., vol.34, no.6, pp.692-696, 2006.

[7] Y. W. Jiang, Y. He and C. M. Tang, Optimal online algorithms for scheduling on two identical
machines under a grade of service, Journal of Zhejiang University Science A, vol.7, no.3, pp.309-
314, 2006.

[8] X. Lu and Z. Liu, Semi-online scheduling problems on two uniform machines under a grade of service
provision, Theoretical Computer Science, vol.489-490, pp.58-66, 2013.

[9] M. A. Bender, S. Chakrabarti and S. Muthukrishnan, Flow and stretch metrics for scheduling contin-
uous job streams, Proc. of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.270-
279, 1998.

[10] M. A. Bender, S. Muthukrishnan and R. Rajaraman, Improved algorithms for stretch scheduling,
Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.762-771, 2002.

[11] A. Legrand, A. Su and F. Vivien, Minimizing the stretch when scheduling flows of divisible requests,
Journal of Scheduling, vol.11, pp.381-404, 2008.

