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Abstract. By extending multinomial measures, a new class of self-similar multi-fractal
measures is developed for texture representation. Two multi-fractal features have been
shown to be suitable for texture discrimination and classification. Their use within a su-
pervised segmentation framework provides us with satisfactory results. In this paper, we
complete the survey on these features by showing their rotation invariant property and
their scaling behavior. Both properties are particularly important for analyzing aerial im-
ages because the geographical elements can appear in different orientations and scales.
Then, an automatic clustering algorithm based on a watershed technique is used for the
segmentation of real world images. The experimental results are encouraging. Through
this study, the multi-fractal measures we developed demonstrate a relevant characteriza-
tion of natural textures by only two attributes. They are rotation invariant and possess
a good behavior with respect to the scaling ratio. These properties reinforce the reliability
of these two attributes for aerial or satellite image characterization.
Keywords: Multi-fractal, Multinomial measurement, Unsupervised image segmentation

1. Introduction. Analyzing and interpreting images by means of texture attributes is
a widespread method including many approaches like statistical characterization [8,10],
filtering techniques [3,15], geometric models [20,22], fractal geometry [2,13,21], or multi-
fractal analysis [16,19,23]. Each of them is well adapted only to a specific application.

In previous work [11], the use of cooccurrence statistics [10] is shown to give poor
segmentation results on aerial images. A straightforward application of fractal features
(fractal dimension, lacunarity) proves them inappropriate for this purpose. Nevertheless,
each geographical element exhibits a kind of statistical self-similarity in its own way.
Several works [14,18] suggested computing local fractal dimension for the improvement of
the segmentation results. Hence, the multi-fractal analysis, which is a generalization of
the fractal geometry, is well adapted to the description of the aerial and satellite images.

The former works of Lévy-Véhel et al. [16,17] introduced a multi-fractal approach for
image segmentation. The analysis of an image is based on local Hölder exponents (with
respect to a measure or a Choquet capacity) and the multi-fractal spectrum (global infor-
mation). Although these mathematical tools can provide relevant information for image
analysis, we must emphasize on the fact that we do not know which measure or capacity
to choose in practice. Furthermore, the computation of the local Hölder exponents and
the multi-fractal spectrum must rely on estimators and is time consuming in most of
cases.

A multi-fractal measure is developed in [11] for segmenting real world images. The
theoretical background and some useful properties of this model are reviewed briefly in
the next section, and an estimator for the inverse problem of parameters identification is
defined. The use of this estimator on several natural textures provides us with meaningful
results. In Section 3, we first recall the main results related to the texture characterization
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by using two multi-fractal features. As the aerial scenes are shaped by man-made objects
(urban areas, open countries) and natural elements (water-courses, vegetation) which
can occur at different scales and orientations, this survey is completed by studying the
scaling behavior and the rotation invariance of both texture descriptors. Then, after a
short review of the classical methods of data clustering, we describe the unsupervised
algorithm we proposed for the segmentation of images. Experimental results are given in
Section 4.3. The limits of our model and future investigations are detailed as a conclusion.

2. Multi-fractal Texture Model. The multinomial measures are well studied self-
similar measures [7]. They can be generated as the limit of multiplicative cascaded pro-
cesses. By introducing spatial per-mutations into each stage of the underlying processes,
we extended the multinomial measures to so called Multi-permuted Multinomial Measures
(or MMM).

2.1. Definitions and properties. More formally, let Np(n) be the set of the first pn non
negative integers and C0 = [0, 1)2 be the support of the measure. Given p2 masses Pi,j

(i, j ∈ Np(1)), whose total sum is 1, the pyramidal construction of an MMM (denoted by
µΠp) is based on an iterative splitting of C0 associated with a multiplicative rule between
successive stages.

At the first stage, C0 = [0, 1)2 (with measure 1) is partitioned regularly into p2 subsets
C1

ij whose measure is Pi,j. The same splitting procedure is carried out on these subsets at

the next stage, yielding (p2)
2

new subsets C2
ki,lj

with a measure defined by a multiplicative
rule:

∀n ≥ 1, µΠp

(
Cn+1

ki,lj

)
= Pπn

i,j(k,l)µΠp

(
Cn

i,j

)
(1)

with ki = ⌊(i + 1)/p⌋ + k and lj = ⌊(j + 1)/p⌋ + l (⌊x⌋ is the integer part of x). πn
i,j is

a permutation related to Cn
i,j at the stage n, acting on the position of the masses Pi,j for

the multiplicative rule involved at the stage n+1. By iterating this process ad infinitum,
one gets an MMM.

Figure 1 displays the first 2 steps of the cascaded process of an MMM with p = 3 and
π1

1,1(k, l) = (l, k). One can notice that the limit measure is a multinomial measure iff all
the permutations are equal to the identity function.

Its multifractality can be determined through a repartition function [9] defined at stage
n as:

Γn(q, τ) =
∑

i,j∈Np(n)

[
µΠp

(
Cn

i,j

)]q

p−2nτ
(2)

Figure 1. Steps 1 and 2 of an MMM’s cascade
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There exists a unique function τ(q), called Rényi exponent, such that Γn(q, τ(q)) = 1.
It characterizes the multi-fractal behavior of a singular measure. Since the permutations
operate only on the position of the masses Pi,j at each stage, the set of measures µΠp(C

n
i,j)

remains invariant.
Thus, the Rényi exponent of an MMM and its corresponding multinomial measure are

identical. Moreover, the MMMs are self-similar (modulo permutations) by construction.
The set of the local Hölder exponents and the multi-fractal spectrum are simply related to
the Rényi exponent by the Legendre transform (see [7]). This remark is very important for
the computation of the multi-fractal features because they can be determined analytically
once the parameters of the model are identified.

2.2. Inverse problem. An MMM is completely defined by the knowledge of the integer
p, the p2 masses Pi,j and the permutations. A fast algorithm is developed in [11] for the
masses estimation:

P̃i,j =
1

1 + Nπ(p, n0)

n0−1∑
n=0

∑
P̃πn

i,j(k,l) (3)

The values P̃πn
i,j(k,l) correspond to the estimates of the permuted masses observed at

iteration n. They can be computed according to Equation (1). Nπ(p, n0) is the number
of permutations achieved after n0 iterations:

Nπ(p, n0) =

n0∑
n=2

(
p2

)n−1
=

p2n0 − p2

p2 − 1
(4)

The permutations can be determined at the same time as the estimation of the permuted

masses. Indeed, the sorting of the estimates P̃πn
i,j(k,l) yields a mapping between the initial

and the permuted positions of the masses.
The method described above is applicable if p and n0 are known a priori. Their choice

depends both on the intrinsic characteristics of the images and on the application consid-
ered. In order to avoid texture mixing within an analyzing window, we suggested taking
small values of p and n0 (respectively 3 and 2) for an accurate segmentation [11].

2.3. Approximating textures. Our first goal was to find a relevant multi-fractal rep-
resentation for texture characterization. In order to evaluate the relevance of the MMM
model for texture approximation, several natural textures – drawn from the Brodatz al-
bum and the image database of SIPI (Signal and Image Processing Institute) of the USC
– are used as testing images. Figure 2 shows a sample of 4 original textured images (grass,

Figure 2. Four natural textures (D9, D12, D19, T3) and their approxi-
mations by µΠ3
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bark, wool and rough wall) and their corresponding approximation computed by µΠ3 with
n0 = 5 iterations.

Some artifacts (square blocks) can be observed on the synthesized images. They are due
to the regular iterated splitting of C0. However, as well as micro-textures (grass, wool)
or macro-textures (bark, rough wall), the MMM approximations preserve quite correctly
their geometric structures thanks to the effect of the permutations.

3. Texture Attributes. The multi-fractal analysis of an MMM can also be achieved by
means of the multi-fractal spectrum approach (see 2.1) which gives both local and global
information.

3.1. Previous results. This huge amount of information has been largely reduced as
only 2 attributes are extracted, namely the extreme of the local Hölder exponents [7]:

αmin = − log

(
max

i,j
Pi,j

)
/2 log p, (5)

αmax = − log

(
min
i,j

Pi,j

)
/2 log p. (6)

They are directly related to the parameters of the model and should give a good charac-
terization of the model.

In [11], these texture attributes are computed (with p = 3 and n0 = 5) on 100 subimages
(of size 2432) extracted from each of the 13 Brodatz textures: grass, bark, straw, textile,
wool, pressed calf leather, sand, water, wood, raffia, pigskin, wall bricks and bubbles.
Here, we add 3 more textures (called T1, T2, T3) retrieved from the image database of
the SIPI: hexagonal holes, gravels and rough wall.

The (αmin, αmax) plot of these textures is displayed in Figure 3. Most of the clusters are
separated from the others, except those of the textures D19 and D84 (resp. D92 and T2).
In fact, if one examines these pairs of textures, their patterns look similar. For instance,
D19 and D84 are both structured micro-textures whose patterns are about the same size.
As for D92 and T2, they are non-structured macro-texture also with equivalent pattern
size.

Figure 3. (αmin, αmax) plot computed for each of the 16 Brodatz and
Brodatz-like textures
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Furthermore, the spatial arrangement of the clusters is directly related to the visual
irregularities of the textures. Indeed, the most irregular (D9) or contrasted (T1) textures
have their clusters located on the top left corner of the (αmin, αmax) plot. Whereas the
clusters of the smoother textures (D38) are located near the right bottom corner. This
phenomenon can be explained by the fact that irregular or contrasted textures have a
wide range of local irregularities (i.e., small αmin and large αmax values). The opposite
behavior is observed for the smoother textures.

3.2. Scaling behavior. Our multi-fractal attributes should be scale invariant according
to the theory. For each textured image, we studied this behavior over a set of 5 images of
size 2432, 3652, 4862, 6082 and 7292 zoomed in or out from the original 5122 sized image
by a bi-cubic interpolation. The ratio between the largest image and the smallest one is
3.

Again, αmin and αmax are computed from sub-images of size 2432 for each zoomed image.
The plots shown in Figure 4 reveal the representative (only 6 textures are considered for
clarity) scaling behavior of the mean values of the attributes. When the scaling ratio
increases, the 2 attributes are not as stable as predicted by the theory, but their variation
does not exceed a few percent. Hence, we can assume that both attributes are relevant
enough for texture characterization whatever the scale of observation is (in practice, a
range of scales).

Figure 4. Scaling behavior of the mean values of αmin (left) and αmax

(right) for 6 textures

3.3. Rotation invariance. The Hölder exponents characterize the local irregularities
of a measure. If the support of the image is rotated, the irregularities should remain
unchanged. This invariance property is investigated by testing images drawn from the
SIPI image database in which the 13 Brodatz textures are scanned under 7 different
angles: 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 200◦. For the 3 other textures (T1, T2 and T3),
the rotated images are generated by a bi-cubic interpolation.

The attributes are estimated for each rotated texture in the same manner as we do in the
previous sections. Each cluster is modelled by a 2D Gaussian distribution whose means
and covariance matrices are determined from the data. Whatever the rotated texture is,
the coefficients of the covariance matrices are very small (10−4 to 10−6): the clusters are
compact and can be represented by the means.

For almost every texture (13 over 16), the variation of the 2 attributes with respect to
the rotation angles does not exceed 10−2. The less favorable case we can observe is that
of the grass texture, but the variations are not excessive (maximum difference is about
006). According to these experimental results, we can conclude that αmin and αmax are
stable enough under the rotation transformation.
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4. Unsupervised Segmentation. The commonly used clustering techniques are based
on K-means algorithm, hierarchical clustering, parametric or nonparametric density es-
timation [6]. After a short analysis of their advantages and shortcomings, we suggest a
method based on the last approach for our segmentation problem.

4.1. Clustering algorithms. The K-means algorithm is a very fast and appropriate
technique for large data sets. However, the number and the gravity centers of the effective
clusters need to be specified correctly. If the clusters are unbalanced or elongated, small
clusters may be absorbed by larger ones or conversely large clusters could be split into
artificial sub-clusters.

Hierarchical clustering corresponds to an iterative merging which depends on the defi-
nition of a certain distance. At the beginning, the number of clusters is set equal to the
number of data points. It decreases successively according to the merging criterion. For
large data sets, the computation is very long.

By assuming that the underlying density of the data set results from a mixture of
Gaussians, the parametric approach consists of estimating the means and the covariance
matrices of these Gaussians. The effective number of clusters and the parameters of the
Gaussians need to be initialized with accuracy. The commonly used methods are Expecta-
tion Maximization or Stochastic Expectation Maximization algorithms which spend lots
of computation time.

4.2. Nonparametric method. This method is also based on the determination of the
density of the data set without any analytical expression known. By convolving N data
points (X1, . . . , XN) with a kernel function K [4,5], one gets the density function by:

fN(x) =
1

NhN

N∑
i=1

K

(
x − Xi

hN

)
(7)

hN is the smoothing factor (width of K), its optimal choice depends on N and also on K
[24]. The number of clusters is usually set to the number of local maxima of fN(x).

For our purpose, we chose the histogram calculation which is the simplest and the fastest
nonparametric technique. The rectangular kernel K is centered on regularly spaced points
X ′

i (the data set is resampled) instead of Xi. Then, the reliability of the estimated density
depends both on the resampling step and the smoothing factor hN .

According to the definition of the MMM, αmin and αmax cannot take any values because
the masses are constrained (total sum is 1). Thus, it is easier to fix a priori the resampling
step and the smoothing factor. Assuming that the clusters corresponds to the principal
modes of the histogram, a coarse resampling yields an approximation good enough and
captures the low frequencies of the histogram.

Once the coarse density is determined, the data points are merged by a watershed
technique [1,25] applied to the turned up histogram. The number of clusters is given
by the number of basins. The watersheds define the cluster domains which lead to a
segmentation of images.

4.3. Experimental results. We performed this unsupervised segmentation on satellite
images and aerial photographs. For the histogram computation, the resampling step and
the smoothing factor are respectively equal to 0.003 and 0.015.

As an example, the histogram related to the aerial photograph of Toride (middle image
of Figure 5) is displayed in Figure 5. One can easily distinguish 4 visible modes but the
algorithm gives us more clusters than expected (7 instead of 4) due to the boundary pixels.
If we do not take them into account, the 4 modes observed on the histogram correspond
to the effective clusters, namely the urban areas, the watercourses, the open countries and
the vegetation.
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Figure 5. (Left) Histogram of (αmin, αmax) related to the aerial photo-
graph of Toride; (Middle and Right) Original and segmented aerial photo-
graph of Toride

The right image of Figure 5 corresponds to the segmentation result. The 4 kinds of
geographical elements are all rather well located. Of course, some pixels are misclassified
(fields classified as watercourse), and this is due to the smoothness of those fields. In spite
of this, the segmentation result is encouraging. All the more as the unsupervised segmen-
tation algorithm found one more class (vegetation) than our supervised segmentation
carried out in [11].

5. Conclusions. Through this study, the multi-fractal measures we developed demon-
strate a relevant characterization of natural textures by only two attributes. They are
rotation invariant and possess a good behavior with respect to the scaling ratio. These
properties reinforce the reliability of these two attributes for aerial or satellite image
characterization.

The 2 multi-fractal attributes are also used for segmenting simulated SPOT5 images
and other non aerial textured images with outstanding results [12]. Of course, our method
is ill-adapted if the local maxima of the histogram are too close or unbalanced. In that
case, the coarse density estimation may not take into account the smaller ones which may
lead to a poor segmentation result.

Although the 2 attributes are implicitly related to the permutations, we have to extend
the study related to the effect of the permutations on the texture patterns. As the number
of iterations is generally limited, a Markovian analysis cannot be considered. Thus, we
shall define empirically a certain distance which is a very difficult task so as to reveal the
geometric information carried by the permutations.
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