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Abstract. This paper proposed a model of iron and steel supply chain network with two
objectives, which are to minimize the total costs and risks. The supply chain network is
composed of iron ore suppliers, iron and steel factories, and distribution centers. The
total costs include variable costs, fixed costs, and transportation costs. Different from
previous studies, this paper simultaneously considers the risks and costs of iron and steel
supply chain network. The model is a mixed integer nonlinear programming model and
hard to be solved. However, when an auxiliary variable is introduced, this bi-objective
model is transformed into single objective model and is solved by CPLEX 12.6 perfectly.
Keywords: Fuzzy optimization, Iron and steel, Supply chain network

1. Introduction. Iron and steel industry is the pillar industry of the national economy.
It supplies materials for other important sectors of the national economy, such as ma-
chinery industry, construction industry, and automobile industry. It plays an important
and basic role in the development of the national economy. With the integration of global
economy and the rapid development of high and new technology, iron and steel enterprises
face increasing competition. The rules of competition have been changed. The compe-
tition of single enterprise has become the competition of overall supply chain. Supply
chain management is not only an important means of iron and steel enterprises to win the
competition, but also a research hotspot. In the process of supply chain management, the
optimization of supply chain management has important significance because it affects the
performance of the supply chain management and is related to the efficiency and profits
of enterprises. Therefore, studying the optimization of the iron and steel supply chain
network has important theoretical and practical significance.

Some scholars optimize the iron and steel supply chain network. Zadeh et al. designed a
steel supply chain network in 2013. A mixed integer nonlinear programming model and a
mixed integer linear programming model are presented and solved by using a commercial
solver [1]. Wang established a bidirectional VRP model on the iron and steel enterprises’
external logistics and distribution network and solved it using improved immune genetic
algorithm in 2011 [2]. Zheng proposed an optimization model to minimize the total cost,
which is composed of transportation cost, inventory cost and the operation cost and
solved this model using genetic algorithm in 2012 [3]. Alawneh et al. developed a linear
programming model to describe Qatar steel manufacturing supply chain from suppliers to
consumers in 2014. The model is validated and solved using GAMS software [4]. However,
the above researches have the following two issues. First, uncertain environment especially
the fuzzy environment is not involved in above literature. Second, previous studies have
only a single objective, which is minimizing the total costs or total transportation distance.
In summary, this paper will study the optimization problem of iron and steel supply chain
network under fuzzy environment. There are two objectives. One is minimizing the total
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cost of supply chain network. The other is minimizing the risks of iron and steel supply
chain network.

The main contributions of this paper can be summarized as follows. First, the risks of
supply chain are considered. Minimizing the risks is the objective of this study. Few pre-
vious studies regard risks as their objective due to the computational difficulties. Second,
the risks are measured by lower possibilistic semivariance, which is more appropriate than
variance. Third, the optimization of iron and steel supply chain network is studied. In
the past, supply chain networks of home appliances, agricultural products, and electronic
products were designed and optimized. However, the researches on iron and steel supply
chain network are few. Fourth, the bi-objective problem is solved. Previous studies only
have single objective, i.e., minimizing the costs or maximizing the profits. Fifth, this
paper solves the optimization problem under fuzzy environment. Uncertainties in most
previous literature come from random environment rather than fuzzy environment.

The rest of this paper is as follows. In Section 2, fundamental definitions and theorem
are introduced. Mathematical formulation of the proposed model is presented in Section
3. In Section 4, the solution method is proposed. Section 5 presents a numerical example.
Finally, the conclusion of this article and future research are given in Section 6.

2. Fundamental Definitions and Theorem. A fuzzy number C is a fuzzy set of the
real line X with a normal, fuzzy convex and continuous membership function ηc (x) of
bounded support. γ-level set of a fuzzy number C is denoted by [C]γ = {x ∈ X|ηc (x) ≥ γ}
(the closure of the support of C) if γ = 0. If C is a fuzzy number, [C]γ is a subset on X
for all γ ∈ [0, 1].

Definition 2.1. Let C be a fuzzy number with γ-level set [C]γ = [c(γ), c(γ)], γ ∈ [0, 1].

Then the possibilistic mean value of C is defined as follows [5].

E(C) =

∫ 1

0

γ(c(γ) + c(γ))dγ (1)

If the weighted function f (γ) = 2γ, the definitions of the lower and upper possibilistic
semivariances of C are as follows.

Definition 2.2. Let C be a fuzzy number with γ-level set [C]γ = [c(γ), c(γ)], γ ∈ [0, 1].

Let E(C) be the possibilistic mean value of C. Then the upper and lower possibilistic
semivariances of fuzzy number C are as follows [6].

var+(C) =

∫ 1

0

2γ(E(C) − c(γ))2dγ (2)

var−(C) =

∫ 1

0

2γ(E(C) − c(γ))2dγ (3)

Definition 2.3. If any two fuzzy numbers with [C]γ = [c(γ), c(γ)], γ ∈ [0, 1] and [D]γ =[
d(γ), d(γ)

]
, γ ∈ [0, 1] are given, the upper and lower possibilistic semicovariances between

C and D are as follows.

cov+(C, D) =

∫ 1

0

2γ(E(C) − c(γ))
(
E(D) − d(γ)

)
dγ (4)

cov−(C, D) =

∫ 1

0

2γ(E(C) − c(γ))(E(D) − d(γ))dγ (5)

Theorem 2.1. [7] Let C1, C2, · · · , Cn be n fuzzy numbers, and let λ1, λ2, · · · , λn be n
positive real numbers.

var+

(
n∑

i=1

λiCi

)
=

n∑
i=1

λ2
i var+(Ci) + 2

n∑
i<j=1

λiλjcov
+(Ci, Cj) (6)
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var−

(
n∑

i=1

λiCi

)
=

n∑
i=1

λ2
i var−(Ci) + 2

n∑
i<j=1

λiλjcov
−(Ci, Cj) (7)

3. Formulation of Model.

3.1. Notation and index.
S set of iron ore suppliers
M set of iron and steel factories
D set of distribution centers
C set of consumer zones
s index of iron ore suppliers s ∈ S
m index of iron and steel factories m ∈ M
d index of distribution centers d ∈ D
c index of consumer zones c ∈ C
Parameters:
fs the trapezoidal fuzzy fixed cost of iron ore suppliers s, fs ∼ (ef,s, hf,s, sf,s, kf,s)
fm the trapezoidal fuzzy fixed cost of iron and steel factories, fm ∼ (ef,m, hf,m, sf,m, kf,m)
fd the trapezoidal fuzzy fixed cost of distribution centers d, fd ∼ (ef,d, hf,d, sf,d, kf,d)
vs unit iron ore cost of supplier s
vm unit production cost of iron and steel factory m
vd unit distribution cost of distribution center d
rsm unit trapezoidal fuzzy freight rate from iron ore supplier s to factories, rsm ∼

(esm, hsm, ssm, ksm)
rmd unit trapezoidal fuzzy freight rate from iron and steel factory m to distribution

center d, rmd ∼ (emd, hmd, smd, kmd)
rdc unit trapezoidal fuzzy freight rate from distribution center d to consumer zone c,

rdc ∼ (edc, hdc, sdc, kdc)
Dc demand of customer zone c
cs capacity of iron ore supplier s
cm capacity of iron and steel factory m
cd capacity of distribution center d
Decision variable
ys 1 if iron ore supplier s is open; 0 otherwise
ym 1 if iron and steel factory m is open; 0 otherwise
yd 1 if distribution center d is open; 0 otherwise
xsm quantity of iron ore from the iron ore supplier s to iron and steel factory m
xmd quantity of product from iron and steel factory m to distribution center d
xdc quantity of product from distribution center d to customer zone c

3.2. Model formulation.
Objective function

Minimize (var (total cost)) (8)

Minimize(total cost ) (9)

The total cost is the sum of the following costs, i.e., total cost = fixed cost+ variable
cost + transportation cost.

fixed cost =
∑
s∈S

fsys +
∑
m∈M

fmym +
∑
d∈D

fdyd (10)

variable cost =
∑
s∈S

∑
m∈M

vsxsm +
∑
m∈M

∑
d∈D

vmxmd +
∑
d∈D

∑
c∈C

vdxdc (11)
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transportation cost =
∑
s∈S

∑
m∈M

rsmxsm +
∑
m∈M

∑
d∈D

rmdxmd +
∑
d∈D

∑
c∈C

rdcxdc (12)

Constraints
All constraints of the proposed model are represented as follows.∑

s∈S

xsm =
∑
d∈D

xmd ∀m (13)∑
m∈M

xmd =
∑
c∈C

xdc ∀d (14)∑
d

xdc ≥ Dc ∀c (15)∑
m∈M

xsm ≤ csys ∀s (16)∑
d∈D

xmd ≤ cmym ∀m (17)∑
c∈C

xdc ≤ cdyd ∀d (18)

Constraints (13) and (14) are balanced constraints. Obviously, products or iron ores
entering flows per node should be equal to all issuing flows of that node for the products
or iron ores at each node. Therefore, constraints (13) and (14) are balance constraints of
iron and steel factories, distribution centers, respectively. Constraint (15) ensures that
demands for iron and steel must be fully met. Constraints (16) to (18) are capacity con-
straints. Capacity constraints control the maximum flows. Constraint (16) is for capacity
of iron ore suppliers. Constraints (17) and (18) control output capacities of iron and steel
factories, distribution centers, respectively.

According to Section 2, the crisp possibilistic mean value of fixed cost, variable cost,
transportation cost, respectively, can be expressed as

E(fixed cost)=
∑
s∈S

(
ef,s + hf,s

2
+

kf,s − sf,s

6

)
ys

+
∑

m∈M

(
ef,m + hf,m

2
+

kf,m − sf,m

6

)
ym

+
∑
d∈D

(
ef,d + hf,d

2
+

kf,d − sf,d

6

)
yd

(19)

E(transportation cost)=
∑
s∈S

(
esm + hsm

2
+

ksm − ssm

6

)
xsm

+
∑

m∈M

(
emd + hmd

2
+

kmd − smd

6

)
xmd

+
∑
d∈D

(
edc + hdc

2
+

kdc − sdc

6

)
xdc

(20)

E(variable cost) =
∑
s∈S

∑
m∈M

vsxsm +
∑
m∈M

∑
d∈D

vmxmd +
∑
d∈D

∑
c∈C

vdxdc (21)

E(total cost) = E(fixed cost) + E(variable cost) + E(transportation cost) (22)

Variance implies uncertainty of income. However, this uncertainty may lead to an ad-
ditional loss or income. In general, risks mean the additional loss. Therefore, it is more
appropriate to use the lower possibilistic semivariance of fuzzy total costs to measure the
risks. Thus, according to definitions in Section 2, the risks of fuzzy total cost can be
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computed as follows.

var−(total cost)

=

[∑
s∈S

∑
m∈M

(
esm + hsm

2
+

ksm − ssm

6

)
xsm +

∑
m∈M

∑
d∈D

(
emd + hmd

2
+

kmd − smd

6

)
xmd

+
∑
d∈D

∑
c∈C

(
edc + hdc

2
+

kdc − sdc

6

)
xdc +

∑
s∈S

(
ef,s + hf,s

2
+

kf,s − sf,s

6

)
ys

+
∑
m∈M

(
ef,m + hf,m

2
+

kf,m − sf,m

6

)
ym +

∑
d∈D

(
ef,d + hf,d

2
+

kf,d − sf,d

6

)
yd

]2

+
1

18

[∑
s∈S

∑
m∈M

ssmxsm +
∑
m∈I

∑
d∈D

smdxmd +
∑
d∈D

∑
c∈C

sdcxdc +
∑
s∈S

sf,sys

+
∑
m∈M

sf,mym+
∑
d∈D

sf,dyd

]2

(23)

4. The Solution Method. The solution method is given as follows. Firstly, the positive
ideal solution and negative ideal solution for each of the fuzzy objectives are solved.
Secondly, the linear membership functions are determined. They can be expressed as
follows.

µ1(w1) =


1 if w1 < wα−PIS

1

wα−NIS
1 − w1

wα−NIS
1 − wα−PIS

1

if wα−PIS
1 ≤ w1 ≤ wα−NIS

1

0 if w1 > wα−NIS
1

(24)

µ2(w2) =


1 if w2 < wα−PIS

2

wα−NIS
2 − w2

wα−NIS
2 − wα−PIS

2

if wα−PIS
2 ≤ w2 ≤ wα−NIS

2

0 if w2 > wα−NIS
2

(25)

wα−PIS
1 and wα−NIS

1 are minimum and maximum of semivariance of fuzzy total costs,
respectively. wα−PIS

2 and wα−NIS
2 are minimum and maximum of fuzzy total costs, re-

spectively. Thirdly, the auxiliary variable L which enables the fuzzy bi-objective problem
to be converted into a single-objective problem is introduced. In general, L can be re-
garded as the level of satisfaction of decision-makers. If L = 1, then each objective is
fully satisfied; if 0 < L < 1, then all of the objectives are satisfied at the level L; if L = 0,
then none of the objectives are satisfied. The single-objective problem can be expressed
as follows.

max L s.t. L ≤ µi(wi), i = 1, 2, Equations (13)-(18)

5. A Numerical Example. The scale of the computational experiment is as follows: the
number of potential locations for iron ore suppliers, iron and steel factories, distribution
centers, and customer zones is three, three, three, six, respectively. Capacities of iron ore
suppliers, iron and steel factories, distribution centers are all 600. Demand of iron and
steel of each customer zone is 150. The variable costs of iron ore suppliers, iron and steel
factories, and distribution centers are shown in Table 1. The fuzzy fixed costs of iron ore
suppliers, iron and steel factories, distribution centers are shown in Table 2. The data
about unit fuzzy freight rates among facilities are given from Table 3 to Table 5.



156 Z. DAI

Table 1. The variable costs

iron ore suppliers iron and steel factories distribution centers
1 110 65 75
2 110 40 140
3 110 60 110

Table 2. The possibility distributions of fixed costs

iron ore suppliers iron and steel factories distribution centers
1 (5000, 6560, 60, 60) (1140, 1500, 90, 30) (1000, 2360, 60, 60)
2 (5000, 6960, 80, 40) (1000, 1760, 10, 50) (1000, 2580, 30, 30)
3 (1240, 1600, 90, 30) (620, 1800, 30, 30) (1220, 3000, 10, 50)

Table 3. The possibility distributions of freight rate from iron ore suppli-
ers to factories

factories
1 2 3

suppliers
1 (300, 570, 20, 70) (300, 600, 30, 30) (360, 720, 30, 30)
2 (210, 420, 50, 40) (400, 670, 50, 40) (500, 650, 70, 20)
3 (300, 620, 80, 40) (320, 640, 80, 40) (500, 700, 30, 30)

Table 4. The possibility distributions of freight rate from factories to dis-
tribution centers

distribution centers
1 2 3

factories
1 (130, 300, 10, 20) (190, 300, 20, 10) (300, 580, 30, 30)
2 (130, 300, 10, 20) (330, 500, 20, 10) (200, 420, 50, 10)
3 (300, 470, 10, 20) (200, 490, 20, 10) (260, 600, 40, 20)

CPLEX 12.6 is used to solve this model. Command of CPLEX, i.e., cplexmiqcp is
used. The value of exitflag is 1, which means the most optimum solution is obtained.
wα−PIS

1 and wα−NIS
1 are 85397751250, 112847206050, respectively. wα−PIS

2 and wα−NIS
2

are 1180907, 1372733, respectively. The results show that the first and second suppliers
and factories should be opened. The first, second and third distribution centers should
be opened. The optimum lower semivariance of fuzzy total costs is 95749690423. The
optimum total costs is 1253250. The value of L is 0.6229. The flows among facilities are
shown from Table 6 to Table 8.

6. Conclusions and Future Research. The optimization of iron and steel supply chain
network is an important issue of supply chain management. The bi-objective model of
iron and steel supply chain network is put forward. Different from previous studies, this
paper considers and minimizes the risks and costs of iron and steel supply chain network.
The proposed model includes variable costs, fixed costs, and transportation costs. It is an
NP (non-deterministic polynomial) problem and a mixed integer nonlinear programming
model. However, this bi-objective problem is transformed into a single objective problem
by introducing an auxiliary variable and solved perfectly.

There is some guidance for future research. First, the optimization of multi-period and
multi-product iron and steel supply chain network should be studied. The production of
iron and steel is a repetitive process. Furthermore, one factory can produce many kinds
of products. Therefore, it is necessary to study the optimization of iron and steel supply
chain network with multi-period and multi-product. It makes the study more realistic.
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Table 5. The possibility distributions of freight rate from distribution
centers to customer zones

distribution centers
1 2 3

1 (350, 700, 20, 10) (400, 680, 30, 30) (240, 750, 60, 30)
2 (200, 490, 20, 10) (400, 630, 20, 10) (550, 700, 70, 20)

customer 3 (400, 560, 30, 30) (300, 640, 30, 30) (340, 600, 80, 40)
zones 4 (350, 700, 20, 10) (300, 520, 40, 20) (300, 680, 70, 20)

5 (300, 590, 20, 10) (300, 640, 40, 20) (510, 600, 70, 20)
6 (300, 800, 20, 10) (250, 700, 60, 30) (600, 750, 50, 40)

Table 6. The quantity of iron ore from suppliers to factories

factories
1 2 3

suppliers
1 0 300 0
2 600 0 0
3 0 0 0

Table 7. The quantity of iron and steel from factories to distribution centers

distribution centers
1 2 3

factories
1 300 300 0
2 69.25 0 230.75
3 0 0 0

Table 8. The quantity of iron and steel from distribution centers to cus-
tomer zones

distribution centers
1 2 3

1 0 150 0
2 150 0 0

customer 3 150 0 0
zones 4 0 150 0

5 69.25 0 80.75
6 0 0 150

Second, intelligent algorithms can be used to solve more complex models. CPLEX can-
not solve the general optimization problem. Hence, it is necessary to use multi-objective
evolutionary algorithm to solve nonlinear optimization problem of iron and steel supply
chain network, such as genetic algorithm, particle swarm algorithm, and simulation an-
nealing algorithm. Third, closed-loop supply chain and green supply chain of iron and
steel supply network can be studied. Since governments and society pay more attention
to environmental problems, iron and steel enterprises not only consider the economic ben-
efits and risks, but also take the environmental responsibilities. Thus, it is significant to
regard the reduction of emissions and waste as targets.
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