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Abstract. Wavelet frame packets or framelet packets based on wavelet frames on L2(R)
have been well studied in theory and applications, since they can provide adaptive choice
from a library of wavelet frames for a wide range of practically oriented tasks. However,
the studies of wavelet frame packets in l2(Z) have been less involved. In this paper, we
first present a scheme to construct a class of J-stage framelet packets, and then give an
example on Z to explain our scheme.
Keywords: Framelet packet, Convolution, First-stage framelet, Sequence space

1. Introduction. The dyadic wavelet frames have played an important role in the ap-
plications such as signal processing, communications, and sensing. For example, for a

band-limited framelet ψ, the measure of supp
(
ψ̂j,k

)
is 2j times the measure of supp

(
ψ̂

)
.

Thus, the wavelet frames have poor frequency localization when j is large. For some
applications, especially for speech signal processing, it is more convenient to have wavelet
frames with better frequency localization. This will be provided by the framelet packets
(or called wavelet frame packets).

The original idea of wavelet packets was introduced by Coifman et al. in [1,2]. However,
the theory itself is worthy of further study. Some developments in the wavelet packets
theory should be mentioned, such as multiwavelet packets [3] on Rd, the non-tensor-
product version [4] of wavelet packets on Rd. Recently, using the so-called splitting trick
given by Daubechies [5], Lu and Fan in [6,7] constructed a class of tight framelet packets
with 2Id-dilation for L2(Rd) from the unitary extension principles given by Ron and Shen
in [8].

However, many algorithmic realizations based function systems given above in applied
mathematics are in the digital setting because the input/output data and all filters are
of discrete nature, and one of the most common shortcomings of some of such function
systems is lack of providing a unified treatment of the continuum and digital settings, i.e.,
allowing a digital theory to be a natural digitization of the continuum theory. Curvelets,
for instance, are known to yield tight frames but the digital curvelet transform is not
designed within the curvelet-framework and hence, in particular, is not covered by the
available theory [9]. In this paper, we will directly study the discrete versions of framelet
packets on Z and their key properties.

This paper is organized as follows. Section 2 gives some notations and definitions we
shall use. Section 3 gives a scheme to construct a class of J-stage framelet packets. We
end this paper with an example on Z in Section 4.
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2. Preliminaries. We begin by introducing some notation and definitions we shall use.
H denotes a separable Hilbert space with inner product ⟨·, ·⟩ and norm ∥x∥ = ⟨x, x⟩ 1

2

for each x ∈ H. Let J be a numerable index set. A countable system {ϕj}j∈J in H is
called a frame for H if there exist constants A and B, 0 < A ≤ B <∞, such that

A∥x∥2 ≤
∑
j∈J

|⟨x, ϕj⟩|2 ≤ B∥x∥2 (1)

holds for all x ∈ H. The numbers A and B are called the lower and upper frame bounds,
respectively. The frame bounds are not unique because numbers less than A and greater
than B are also valid frame bounds. The optimal lower bound is the supremum of all lower
bounds and the optimal upper bound is the infimum of all upper bounds. If A = B = 1,
then the frame is called a Parseval frame.

We denote the inner product in L2([0, 2π]) by ⟨f, g⟩L2([0,2π]) :=
∫

[0,2π]
f(x)g(x)dx/(2π),

where f, g ∈ L2([0, 2π]), its corresponding norm by ∥ · ∥L2([0,2π]) := ⟨·, ·⟩1/2

L2([0,2π]). For a

sequence u ∈ l2(Z) we denote the j-th coordinate by u(j), and call it a finitely supported
sequence if only finitely many non-zero elements in it. Denote the inner product and the
norm in l2(Z) by ⟨u, v⟩ =

∑
k∈Z u(k)v(k), where u, v ∈ l2(Z), and ∥ · ∥ := ⟨·, ·⟩1/2, respec-

tively. For a sequence u ∈ l2(Z), we define its Fourier transform by û(ξ) =
∑

k∈Z u(k)e
ikξ

for almost all ξ ∈ R. And the Plancherel formula says

⟨û, v̂⟩L2([0,2π]) = ⟨u, v⟩ =
∑
k∈Z

u(k)v(k), u, v ∈ l2(Z). (2)

The discrete convolution u ∗ v of u = {u(k)}k∈Z and v = {v(k)}k∈Z is defined by

u ∗ v(n) =
∑
k∈Z

u(n− k)v(k), n ∈ Z. (3)

It is well known that u ∗ v ∈ l2(Z) when u ∈ l(Z) and v ∈ l2(Z). As usual, l(Z) :={
u = {u(k)}k∈Z :

∑
k∈Z |u(k)| < +∞

}
. It can be checked that û ∗ v(ξ) = û(ξ)v̂(ξ) for

u, v ∈ l2(Z).
For a sequence u = (u(n))n∈Z, define the downsampling operator D : l2(Z) → l2(Z)

and the upsampling operator U : l2(Z) → l2(Z) on Z by

D(u)(n) = u(2n), U(u)(n) =

{
u(n/2) if n is even,
0 if n is odd,

(4)

respectively. Clearly the m-fold composition of D with itself is denoted Dm, and similarly
for Um. Then

Dm(u)(n) = u(2mn), Um(u)(n) =

{
u(n/2m) if n = 2mj for some j ∈ Z,
0 if n is not divisible by 2m.

(5)

Definition 2.1. For k ∈ Z, the translation operator Rk : l2(Z) → l2(Z) is defined by
Rku(n) = u(n− k) for all n ∈ Z.

Definition 2.2. Suppose u ∈ l2(Z). For n, k ∈ Z, define the conjugate reflection of u:

ũ(n) = u(−n). Also define u∗(n) = (−1)nu(n).

A simple calculation can lead to the following results.

Lemma 2.1. Suppose u, v ∈ l2(Z). Then
(a) ũ, u∗ ∈ l2(Z), and Rku ∈ l2(Z), k ∈ Z.

(b) (ũ)∧(ξ) = û(ξ); (u∗)∧(ξ) = û(ξ + π); δ̂(ξ) = 1, where δ is the delta function.
(c) (Rku)

∧(ξ) = eikξû(ξ); ⟨Rju,Rkv⟩ = ⟨u,Rk−jv⟩, j, k ∈ Z; ⟨u,Rkv⟩ = u ∗ ṽ(k), k ∈ Z.
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3. J th-stage Framelet Packets on Z.

Theorem 3.1. Let L ∈ N. Suppose u, v1, v2, . . . , vL ∈ l(Z). Define the matrix of
(u, v1, v2, . . . , vL) by

A(ξ) =
1√
2

[
û(ξ) v̂1(ξ) v̂2(ξ) . . . v̂L(ξ)

û(ξ + π) v̂1(ξ + π) v̂2(ξ + π) . . . v̂L(ξ + π)

]
. (6)

If

A(ξ)A(ξ)H = I2×2, ξ ∈ [0, π), (7)

then B = {R2ku : k ∈ Z} ∪
{
R2kv

l : k ∈ Z, l = 1, 2, . . . , L
}

is a Parseval frame for l2(Z),

where A(ξ)H is the conjugate transposed matrix of A(ξ), and I2×2 is the 2 × 2 identity
matrix.

Proof: It is necessary to prove that for all z ∈ l2(Z),∑
k∈Z

|⟨z, R2ku⟩|2 +
L∑

l=1

∑
k∈Z

∣∣⟨z, R2kv
l⟩
∣∣2 = ∥z∥2,

which is equivalent to∑
k∈Z

⟨z, R2ku⟩R2ku+
L∑

l=1

∑
k∈Z

⟨z, R2kv
l⟩R2kv

l = z

or

u ∗ U(D(z ∗ ũ)) +
L∑

l=1

vl ∗ U
(
D

(
z ∗ ṽl

))
= z. (8)

To see this, note that by U(D(z)) = (z + z∗)/2, then

(u ∗ U (D (z ∗ ũ)))∧ (ξ) +
L∑

l=1

(
vl ∗ U

(
D

(
z ∗ ṽl

)))∧
(ξ)

= û(ξ)
1

2

[
ẑ(ξ)û(ξ) + ẑ(ξ + π)û(ξ + π)

]
+

L∑
l=1

v̂l(ξ)
1

2

[
ẑ(ξ)v̂l(ξ) + ẑ(ξ + π)v̂l(ξ + π)

]
= ẑ(ξ)

1

2

[
|û(ξ)|2 +

L∑
l=1

∣∣∣v̂l(ξ)
∣∣∣2] + ẑ(ξ + π)

1

2

[
û(ξ)û(ξ + π) +

L∑
l=1

v̂l(ξ)v̂l(ξ + π)

]
.

The condition (7) implies that

|û(ξ)|2 +
L∑

l=1

∣∣∣v̂l(ξ)
∣∣∣2 = 2, û(ξ)û(ξ + π) +

L∑
l=1

v̂l(ξ)v̂l(ξ + π) = 0,

so the last expression reduces to

ẑ(ξ) · 1 + ẑ(ξ + π) · 0 = ẑ(ξ).

By Fourier inversion, this implies Equation (8).

Definition 3.1. Let L ∈ N. Suppose u, v1, v2, . . . , vL ∈ l(Z). If B is a Parseval frame
for l2(Z), we call B a first-stage Parseval wavelet frame for l2(Z), and each element in
{u, v1, v2, . . . , vL} the mother framelet, where B is defined as in Theorem 3.1.

Suppose J is a positive integer. For convenience, let v0 = u. Define w1
l = vl, l =

0, 1, . . . , L, and, inductively, for j = 2, 3, . . . , J ,

ωj
n(L+1)+l = ωj−1

n ∗ U j−1(vl), n = 0, 1, . . . , (L+ 1)j−1 − 1, l = 0, 1, . . . , L. (9)
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Theorem 3.2. Suppose j is a positive integer, n = 0, 1, . . . , (L+1)j−1−1 and ωj−1
n ∈ l(Z).

Further, suppose u = v0, v1, v2, . . . , vL ∈ l(Z) and the matrix A(ξ) defined as in Equation
(6) satisfies Equation (7). Define ωj

n(L+1)+l as in Equation (9). Then

∑
k∈Z

∣∣⟨z, R2j−1kw
j−1
n

⟩∣∣2 =
L∑

l=0

∑
k∈Z

∣∣∣⟨z,R2jkw
j
n(L+1)+l

⟩∣∣∣2 , z ∈ l2(Z). (10)

Proof: We first claim that

L∑
l=0

vl ∗ U
(
Dj

(
z ∗ ω̃j−1

n ∗ U j−1
(
ṽl

)))
= Dj−1

(
z ∗ ω̃j−1

n

)
(11)

for all z ∈ l2(Z). To see that, note that by U ◦ D(z) = (z + z∗) /2 and Dj−1(z) ∗ ω =
Dj−1 (z ∗ U j−1(ω)), then

L∑
l=0

(
vl ∗ U

(
Dj

(
z ∗ ω̃j−1

n ∗ U j−1
(
ṽl

))))∧
(ξ)

=
L∑

l=0

(
vl ∗ (U ◦D)

(
Dj−1

(
z ∗ ω̃j−1

n ∗ U j−1
(
ṽl

))))∧
(ξ)

=
L∑

l=0

(
vl ∗ (U ◦D)

(
Dj−1

(
z ∗ ω̃j−1

n

)
∗ ṽl

))∧
(ξ)

=
L∑

l=0

vl ∗
Dj−1

(
z ∗ ω̃j−1

n

)
∗ ṽl +

(
Dj−1

(
z ∗ ω̃j−1

n

))∗
∗

(
ṽl

)∗

2


∧

(ξ)

=
1

2

(
Dj−1

(
z ∗ ω̃j−1

n

))∧
(ξ)

L∑
l=0

∣∣vl(ξ)
∣∣2

+
1

2

(
Dj−1

(
z ∗ ω̃j−1

n

))∧
(ξ + π)

L∑
l=0

v̂l(ξ)v̂l(ξ + π).

The assumption on A(ξ) implies that(
Dj−1

(
z ∗ ω̃j−1

n

))∧
(ξ) · 1 +

(
Dj−1

(
z ∗ ω̃j−1

n

))∧
(ξ + π) · 0 =

(
Dj−1

(
z ∗ ω̃j−1

n

))∧
(ξ).

By Fourier inversion, this implies Equation (11). Hence, using the fact that U j−1(z ∗ω) =
U j−1(z) ∗ U j−1(ω) and Equation (11) we have

L∑
l=0

ωj
n(L+1)+l ∗ U

j

(
Dj

(
z ∗ ˜ωj

n(L+1)+l

))

=
L∑

l=0

ωj−1
n ∗ U j−1(vl) ∗ U j

(
Dj

(
z ∗ ω̃j−1

n ∗ U j−1
(
ṽl

)))
=

L∑
l=0

ωj−1
n ∗ U j−1(vl) ∗ U

(
Dj

(
z ∗ ω̃j−1

n ∗ U j−1
(
ṽl

)))
= ωj−1

n ∗ U j−1
(
Dj−1

(
z ∗ ω̃j−1

n

))
,
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which implies that∑
k∈Z

⟨
z, R2j−1kw

j−1
n

⟩
R2j−1kw

j−1
n =

L∑
l=0

∑
k∈Z

⟨
z, R2jkw

j
n(L+1)+l

⟩
R2jkw

j
n(L+1)+l, z ∈ l2(Z).

(12)
A simple calculation shows that (12) is equivalent to (10), which is the desired result.

Theorem 3.3. Suppose u = v0, v1, v2, . . . , vL ∈ l(Z) and the matrix A(ξ) defined as in
Equation (6) satisfies Equation (7). Further, define ωj

n as in Equation (9). Then for any
positive integer J ,

B1 :=
{
R2Jkω

J
n : n = 0, 1, . . . , (L+ 1)J − 1, k ∈ Z

}
(13)

generates a Parseval frame for l2(Z).

Proof: By Theorem 3.1, {R2ku : k ∈ Z}∪
{
R2kv

l : k ∈ Z, l = 1, 2, . . . , L
}

is a Parseval
frame for l2(Z). Hence, for all z ∈ l2(Z), we have

∥z∥2 =
∑
k∈Z

|⟨z, R2ku⟩|2 +
L∑

l=1

∑
k∈Z

∣∣⟨z, R2kv
l
⟩∣∣2 =

L∑
l=0

∑
k∈Z

∣∣⟨z, R2kω
1
l

⟩∣∣2 .
For any j = 2, 3, . . . , J , Theorem 3.2 shows that∑

k∈Z

∣∣⟨z,R2j−1kw
j−1
n

⟩∣∣2 =
L∑

l=0

∑
k∈Z

∣∣∣⟨z, R2jkw
j
n(L+1)+l

⟩∣∣∣2 , z ∈ l2(Z);

repeating the argument on
∑
k∈Z

|⟨z, R2ku⟩|2, it follows that

∥z∥2 =
∑
k∈Z

(L+1)J−1∑
n=0

∣∣⟨z,R2Jkw
J
n

⟩∣∣2 ,
which concludes the proof.

Definition 3.2. We call
{
ωJ

n : n = 0, 1, . . . , (L+ 1)J − 1
}

the J-stage basic framelet pack-
ets if B1 defined as in (13) is a Parseval frame for l2(Z).

4. Examples. We start with the identity(
cos2

(
ξ

2

)
+ sin2

(
ξ

2

))2

= 1 ∀ ξ. (14)

Define

|û(ξ)|2 = 2 cos4

(
ξ

2

)
,

∣∣∣v̂1(ξ)
∣∣∣2 = 4 cos2

(
ξ

2

)
sin2

(
ξ

2

)
,

∣∣∣v̂2(ξ)
∣∣∣2 = sin4

(
ξ

2

)
. (15)

A simple calculation shows that the matrix A(ξ) of (u, v1, v2) satisfies Equation (7). Sup-
pose J is a positive integer. For convenience, let v0 = u. Define w1

l = vl, l = 0, 1, 2, and,
inductively, for j = 2, 3, . . . , J ,

ωj
3n+l = ωj−1

n ∗ U j−1(vl), n = 0, 1, . . . , 3j−1 − 1, l = 0, 1, 2. (16)

By using the half-angle trigonometric formulae 2 cos2 ξ = 1 + cos 2ξ, 2 sin2 ξ = 1 − cos 2ξ
and 2 + 2 cos ξ =

(
1 + eiξ

) (
1 − eiξ

)
, we have

u(n) =


√

2/4, n = 0,√
2/2, n = 1,√
2/4, n = 2,

0, otherwise;

v1(n) =

 1/2, n = 0,
−1/2, n = 2,
0, otherwise;
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v2(n) =


√

2/4, n = 0,
−1/2, n = 1,√

2/4, n = 2,
0, otherwise.

Figure 1 shows u, v1, v2, restricted to the interval −10 ≤ n ≤ 10.

Figure 1. u, v1, v2
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Figure 2. 2-stage framelet packet decomposition

By Theorem 3.3, we have that B1 :=
{
R2Jkω

J
n : n = 0, 1, . . . , 3J − 1, k ∈ Z

}
generates

a Parseval frame for l2(Z). Figure 2 depicts the 2-stage framelet packet decomposition
tree associated with u, v1 and v2.
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