
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 1, January 2016 pp. 135–141

STABLE TIME SYNCHRONIZATION FOR WIRELESS SENSOR
NETWORK BY ADAPTIVE VALUE TRACKING

Bing Hu and Zhixin Sun

Key Laboratory of Broadband Wireless Communication and Sensor Network Technology
Nanjing University of Posts and Telecommunications

No. 66, New Mofan Road, Nanjing 210003, P. R. China
hubing 2009@163.com; sunzx@njupt.edu.cn

Received July 2015; accepted October 2015

Abstract. A desirable time synchronization protocol based on flooding in wireless sen-
sor networks (WSNs) should neither demand fast propagation of latest time information
nor keep track of the neighboring nodes. Moreover, such a protocol is strictly required to
have a stable and energy efficient synchronization process. In this paper, we propose a
stable time synchronization algorithm by adaptive value tracking that has smooth conver-
gence process and low energy consumption. By considering both logical clock value and
average rate of logical clock, each sensor node keeps synchronization with the rate of ref-
erence clock through successive feedbacks, and then adjusts clock offset of the node, and
the network-wide synchronization is established fast without demanding fast propagation
of latest time information and keeping track of the neighboring nodes. From our example
comparison, we observed that the proposed algorithm provides stable time synchronization
compared to the time synchronization algorithm by adaptive value tracking.
Keywords: Wireless sensor network, Time synchronization, Adaptive value tracking

1. Introduction. Time synchronization is an essential condition for many applications
in wireless sensor networks. Each node in wireless sensor network is equipped with a
read-only hardware clock which is generated by quartz crystal oscillator. Unfortunately,
due to these unstable quartz crystal oscillators, the frequency of hardware clocks often
drifts away from the rated value and the drift is different from each other. This situation
leads to invalid operation of many applications in wireless sensor network. In order to
achieve a common notion of time, each node maintains a logical clock which is realized
by software to express the synchronized time within the network. The purpose of time
synchronization is to minimize the differences between the logical clocks of nodes (clock
skew) with a stable and efficient way.

There are many theoretical studies in the literature that focus on establishing a rela-
tionship between the hardware clocks of nodes and that of reference node to predict future
clock values of reference node without communicating frequently [1]. The main techniques
employed for this establishment are the method of least-squares [2] and occasionally dis-
tributed agreement [3]. However, those methods either demand fast propagation of latest
time information or keep track of the neighboring nodes, which increase the commu-
nication overhead as well as memory use. To reduce the energy consumption, a novel
mechanism that employs adaptive value tracking [4] to realize time synchronization in
WSN is proposed in [5] and [6].

However, there are also some drawbacks in those papers. The heart of [5] and [6]
is adjusting the rate of the nodes’ logical clock through successive feedbacks which is
generated by a computationally light adaptive value tracking (AVT) technique. Both of
them have a common drawback, at the initial synchronization period, the rates and the
values of the logical clocks often have large skews, when sensor nodes receive the logical
clocks values with big error from unsynchronized sensor nodes, wrong feedbacks will be

135

136 B. HU AND Z. SUN

sent to their AVTs. Hence, before the convergence, the rate multiplier values fluctuating
a lot, and more times to adjust the progress rate of logical clock result in more energy
consumption.

Our objective in this paper is to mitigate the fluctuation of the rate multiplier, which
is introduced by the method of adaptive value tracking. For this purpose, we focus on the
algorithm in [6], and modify this algorithm by considering both the clock skew and the
average rate of the logical clocks to adjust the progress rate of the logical clocks. Thanks
to this improvements, we obtain a more stable synchronization process, compared to [6],
with fewest times to change the rate multiplier, which is compared to [5].

The remainder of this paper is organized as follows. In Section 2, we present our system
model. We describe the time synchronization protocol by adaptive value tracking in
Section 3 and introduce our algorithm in Section 4. The evaluation of our algorithm is
described in Section 5. Finally, we present our conclusions and future work in Section 6.

2. System Model. In this section, we denote a real sensor network as a graph G =
{V,E} with a vertex set V = {1, . . . , N} and an edge set E ⊆ V × V that represent a
set of sensor nodes and the bidirectional communication links between the nodes inside
the wireless broadcast region of each other, respectively. The nodes that are directly
connected with node u ∈ V are referred to as the neighbors of that node and expressed as
Nu = {v ∈ V |{u, v} ∈ E }. In order to simplify our analysis in the rest of the study, we
assume that communication link is reliable and the network is static. Hence, a message
sent by a node u ∈ V is received by all of its neighbors Nu exactly.

We assume that each node is equipped with a read-only hardware clock suffering from
clock drift. We denote the hardware clock of any sensor node u ∈ V as Hu() and the
reading at any real time t as

Hu (t) =

∫ t

0

hu (τ)dτ

hu (τ) represents the rate of the hardware clock at time τ . Since the frequencies of the
crystal oscillators have a bounded drift, we assume that the rate of the hardware clock
Hu at any time t has a bounded drift as 1− ε ≤ hu (t) ≤ 1 + ε where ε is a constant and
satisfies 0 < ε << 1.

Since the hardware clocks suffer from clock drift and cannot be modified, each node
u ∈ V maintains a logical clock Lu() which is a notion of global time. The value of the
logical clock at time t is calculated as

Lu (t) = Lu (t0) + lu (t0)

∫ t

t0

hu (τ) dτ = Lu (t0) + lu (t0) (Hu (t)−Hu (t0))

where t0 is the latest time that a node receives a recent global time information and
updates the progress rate and the offset of its logical clock. We define the average rate

of the logical clock as Lu(t)−Lu(t0)
t−t0

, which is represented by lu (t). The progress rate of the
logical clock at time t is denoted as

lu (t) =
dLu

dt
(t) = lur (t0) hu (t)

where lur (t0) denotes the rate multiplier which is calculated at the time t0.

3. Time Synchronization by Adaptive Value Tracking. In this section, we summa-
rize the time synchronization algorithms by adaptive value tracking in the literature and
present their drawbacks. The heart of these algorithms is adjusting the rate multiplier to
synchronize the rate of the logical clock for the sensor nodes through an adaptive value
tracking technology.
A. Self-Organizing Time Synchronization Protocol

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.1, 2016 137

The protocol introduced in [5] works in a fully distributed self-adaptive manner, namely
self-organizing time synchronization protocol (STSP), which provides time synchroniza-
tion between sensor nodes by keeping track of the neighboring nodes without requiring
memory repository. Every nodes in the network maintain an adaptive value tracker avtu,
which is used for searching and tracking the rate of the logical clock of the sender and
the value represented by avtu is the rate multiplier lur(t) of the logical clock Lu(t) at any
time t. In this algorithm, sensor node transmits its time information, i.e., the value of
its logical clock < Lv >, to its neighbors. Upon receiving time information from v ∈ Nu,
node u adjusts its value of avtu through successive feedbacks to synchronize the progress
rate of the logical clock Lu. The pseudo-code of STSP is presented in Algorithm 1.

Algorithm 1 STSP pseudo-code for node u
1:�Upon receiving < Lv > from v ∈ Nu

2: skew ← Lv − Lu

3: if |skew| ≤MaxSkew then
4: if skew > 0 then
5: avtu.adjust(f ↑)
6: else if skew < 0 then
7: avtu.adjust(f ↓)
8: else avtu.adjust(f ≈) endif
9: endif
10: Lu ← Lu + skew/2

From Algorithm 1, node u performs calculation and adjustment after receiving the time
information from its neighboring nodes, and then broadcasts its estimate value of logical
clock skew to its neighboring nodes. It is considered in [5], if the skew is positive, the
progress rate of the neighboring clock is faster, and a feedback about increasing lur is sent
to avtu. Considering this situation, if the average rate of logical clock lu is greater than
the corresponding value of its neighboring nodes, a greater value of lu will be introduced
due to increasing lur, which will cause feedback fluctuations and increase the frequency
to adjust the rate of multiplier.
B. Adaptive Value Tracking Synchronization Protocol

The main idea of Algorithm 2 is similar to Algorithm 1, both of them are trying
to synchronize the rate of clock by the technology of adaptive value tracking, and unlike
STSP, the protocol proposed in [6] works in a flooding manner. In adaptive value tracking
synchronization protocol (AVTS), a reference node floods its time information into the
network, and each sensor node calculates its clock skew and adjusts its rate with respect
to the reference clock. Compared to STSP, another variable is defined, sequ, to store the
latest sequence number received from the reference node.

The pseudo-code of AVTS is described in Algorithm 2. Whenever a synchronization
message with a larger sequ is received, it means a new synchronization process is beginning.
When node u receives a new synchronization message, clock skew, which is used to adjust
its logical clock rate, is calculated by subtracting the received logical clock from the value

Algorithm 2 AVTS pseudo-code for node u
1:�Upon receiving < Lv, seqv > such that sequ < seqv

2: skew ← Lu − Lv

3: if skew > δ then avtu.adjust(f ↓)
4: else if skew < −δ then avtu.adjust(f ↑)
5: else avtu.adjust(f ≈) endif
6: Lu ← Lv

7: sequ ← seqv

138 B. HU AND Z. SUN

of its logical clock. If the skew is greater than a predefined tolerance δ, it means the
clock skew between its logical clock and the reference clock is beyond the requirement of
synchronization accuracy, then node u sends a decrease feedback f ↓ to avtu to inform that
the logical clock needs to progress at a lower rate. Similarly, if the skew is smaller than
tolerance δ, an increase feedback f ↑ is sent to avtu to increase its logical clock rate. If
the skew is within tolerance bounds, it means the clock skew between its logical clock and
the reference clock satisfies the requirement of synchronization accuracy, and then a good
feedback f ≈ is sent to avtu. After adjusting the progress rate of its logical clock through
the successive feedbacks, node u updates its logical clock value to the received logical
clock value. Finally, update the sequence number. Since the firstly received message can
be considered as carrying the most up-to-date estimate of the reference node, node u
discards other messages in that synchronization process. However, it is easy to find that,
at the beginning of a synchronization process, due to the big skews of the logical clocks,
wrong feedback is sent to their avtu, and a fluctuation of the rate multiplier is generated
before the synchronization.

4. Stable Time Synchronization by Adaptive Value Tracking. On the basis of
Algorithm 1 and Algorithm 2, a stable and energy efficient algorithm by adaptive value
tracking is presented in this section. Similar to the algorithm mentioned in [5] and [6], each
node in Algorithm 3 maintains an adaptive value tracker, i.e., avtu, which is searching
and tracking the rate of the clock of the reference node through successive feedbacks.
However, unlike Algorithm 1 and Algorithm 2, the successive feedbacks are obtained by
considering both logical clock value and average rate of logical clock. This guarantees a
more stable synchronization process, compared to Algorithm 2, with the fewest times to
change the rate multiplier, which is compared to Algorithm 1.

The pseudo-code is described in Algorithm 3. Whenever a synchronization message with
a larger sequ is received, it means a new synchronization process is beginning (Algorithm
3, line 1). Therefore, the firstly received synchronization message can be regarded as the
latest time information of the reference node. In order to adjust the rate of the logical
clock, the received node, i.e., node u, calculates the clock skew by subtracting the logical
clock which is received from node v (Algorithm 3, line 2). In the situation that skew
is greater than a predefined tolerance δ (Algorithm 3, line 3), if the average rate of the
logical clock of node u is equal or greater than node v’s, node u sends a message about
decreasing the rate multiplier f ↓ to avtu, to reduce the progress rate of the logical clock

Algorithm 3 stable time synchronization algorithm for node u

1:�Upon receiving < Lv, lv, seqv > such that sequ < seqv

2: skew ← Lu − Lv

3: if skew > δ
4: if lu ≥ lv then avtu.adjust(f ↓)
5: else avtu.adjust(f ≈)
6: else if skew < −δ
7: if lu ≤ lv then avtu.adjust(f ↑)
8: else avtu.adjust(f ≈)
9: else
10: if lu > lv then avtu.adjust(f ↓)
11: else if lu < lv then avtu.adjust(f ↑)
12: else avtu.adjust(f ≈)
13: endif

14: Lu ← Lu −
⌈
skew/2

⌉
15: sequ ← seqv

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.1, 2016 139

(Algorithm 3, line 4). While, if the average rate of the logical clock of node u is less than
node v’s, node u sends a good feedback to avtu (Algorithm 3, line 5). Similarly, In the
situation that skew is smaller than −δ (Algorithm 3, line 6), if the average rate of the
logical clock of node u is less than or equal to node v’s, node u sends a message about
increasing the rate multiplier f ↑ to avtu, to improve the progress rate of the logical clock
(Algorithm 3, line 7). While, if the average rate of the logical clock of node u is greater
than node v’s, node u sends a good feedback to avtu (Algorithm 3, line 8). In the situation
that skew is in the limit of [−δ, δ], if the average rate of the logical clock of node u is
greater than node v’s, node u sends a message about decreasing the rate multiplier f ↓ to
avtu, to reduce the progress rate of the logical clock (Algorithm 3, line 10). If the average
rate of the logical clock of node u is less than node v’s, node u sends a message about
increasing the rate multiplier f ↑ to avtu, to improve the progress rate of the logical clock
(Algorithm 3, line 11). Otherwise, node u sends a good feedback to avtu (Algorithm 3,
line 12). After completing the above adjustment, node u updates its logical clock value
by subtracting the half of the skew (Algorithm 3, line 14). Finally, update the sequence
number (Algorithm 3, line 15).

Figure 1. A sample execution of Algorithm 1, Algorithm 2 and Algorithm
3 on a network of 3 sensor nodes where each sensor has 2 neighbors respec-
tively

140 B. HU AND Z. SUN

5. Example Comparison. According to the sample presented in [5], Figure 1 presents
the execution process of Algorithm 1, Algorithm 2 and Algorithm 3 respectively. The
network for example includes only three nodes A, B and C. Initially, the logical clock
values of the nodes are equal to the values of their hardware clock and the progress rates
of logical clocks are the same as their hardware clock rates. We assume that the progress
rate of logical clock is approximately equal to the average rate of logical clock in a small
period of time. After 6 clock ticks of hardware clock, a clock tick is denoted as T, and
node A broadcasts its synchronization information to its neighbors. It is easily found that
the average logical clock rates of nodes B and C are both faster than node A, but the
values of nodes B and C are both less than node A. Both Algorithm 1 and Algorithm
2 consider that the greater logical clock value is, the faster progress rate of logical clock
is. However, the value of node A is greater than the value of node B while node A is
progressing at a lower speed compared to node B. Since the received value of logical clock
is greater than their logical clock values, in Algorithm 1 and Algorithm 2, the neighbors
increase the progress rate of their logical clocks, while the received average rate of logical
clock is slower than their average logical clock rates, so it is not changed in Algorithm 3.

After another 6 clock ticks of hardware clock, node C broadcasts its synchronization
information to its neighbors. It can be observed from Algorithm 1 that the neighbors
slow down the speed of logical clocks by sending a feedback to their avts, because the
received value of logical clock is less than their logical clock values. Similarly in Algorithm
2, because the received value of logical clock is greater than their logical clock values, they
increase the speed of their logical clocks by sending a feedback to their avts. While, in
Algorithm 3, the received value of logical clock is less than their logical clock values, but
the received average rate of logical clock is faster than their average logical clock rates, so
the neighbors send a good feedback to their avts. Compared with Algorithm 1, Algorithm
3 maintains approximate convergence rate with fewer times to adjust the progress rate of
logical clock, and without generating a fluctuation of the rate multiplier at the beginning
of a synchronization process, which is introduced in Algorithm 2.

6. Conclusions. In this study, we proposed a stable time synchronization algorithm by
adaptive value tracking that has smooth convergence process and low energy consumption.
The algorithm maintains convergence with fewer times to adjust the progress rate of
logical clock, and without generating a fluctuation of the rate multiplier at the beginning
of a synchronization process, which is obtained by considering both logical clock value
and average rate of logical clock. We gave an example to illustrate the stability and
low energy consumption of the algorithm. A proof of the protocol’s convergence and a
numerical analysis of the protocol’s computational overhead should be done and we leave
these issues as future work.

Acknowledgment. This paper was supported by the National Natural Science Founda-
tion of China (No. 61170276, 61373135); Project for Production Study and Research of
Jiangsu Province (Grant No. BY2013011); Science and Technology Enterprises Innova-
tion Fund Project of Jiangsu Province (Grant No. BC2013027); Key University Science
Research Project of Jiangsu Province (Grant No. 12KJA520003); Natural Science Founda-
tion of Jiangsu Province of China (Grant No. BK20140883); Research Innovation Program
for College Graduates of Jiangsu Province (Grant No. KYLX15 0839).

REFERENCES

[1] K. S. Yildirim and A. Kantarci, Drift estimation using pairwise slope with minimum variance in
wireless sensor networks, Ad Hoc Networks, pp.765-777, 2013.

[2] M. Maróti, B. Kusy, G. Simon and Á. Lédeczi, The flooding time synchronization protocol, Proc. of
the 2nd International Conference on Embedded Networked Sensor Systems, 2004.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.7, NO.1, 2016 141

[3] K. S. Yildirim and A. Kantarci, Time synchronization based on slow-flooding in wireless sensor
networks, IEEE Trans. Parallel and Distributed Systems, pp.244-253, 2014.

[4] S. Lemouzy, V. Camps and P. Glize, Principles and properties of a mas learning algorithm: A com-
parison with standard learning algorithms applied to implicit feedback assessment, IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology, 2011.

[5] O. Gürcan and K. S. Yildirim, Self-organizing time synchronization of wireless sensor networks
with adaptive value trackers, Proc. of the 7th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, 2013.

[6] K. S. Yildirim and O. Gürcan, Efficient time synchronization in a wireless sensor network by adaptive
value tracking, IEEE Trans. Wireless Communications, pp.3650-3664, 2014.

