
ICIC Express Letters
Part B: Applications ICIC International c⃝2016 ISSN 2185-2766
Volume 7, Number 1, January 2016 pp. 117–122

POSSIBILISTIC DESCRIPTION LOGIC PROGRAMS

Tingting Zou∗ and Ansheng Deng

Information Science and Technology College
Dalian Maritime University

No. 1, Linghai Road, Dalian 116026, P. R. China
∗Corresponding author: zoutt@dlmu.edu.cn

Received July 2015; accepted October 2015

Abstract. Description logics (DLs) are a class of knowledge representation languages.
However, DLs cannot well model a great deal of real-world problems because of the restric-
tion of represented formalism. To address this problem, we further extend DLs such that
they can deal with uncertain, incomplete, inconsistent information and non monotonic
reasoning at the same time. We propose tightly coupled possibilistic description logic pro-
grams (or simply possibilistic dl-program) under the possibilistic answer set semantics,
which are a tight integration of disjunctive logic programs, possibilistic logics and possi-
bilistic description logics. To our knowledge, this is the first such approach. First of all,
we define the syntax and semantics of possibilistic dl-program. Then, we present some
possibilistic inferences. Moreover, we show some semantic properties of possibilistic dl-
program. Finally, we provide two algorithms to compute the consistency degree.
Keywords: Description logics, Possibilistic logics, Possibilistic description logics, An-
swer set semantic, Disjucntive logic programs

1. Introduction. Description logics are a class of knowledge representation languages,
and can model an application domain of interest by a structured and formally well-
understood way [1,2]. Unfortunately, a great deal of real-world problems cannot be mod-
elled by DLs, because crisp DLs cannot model uncertain, incomplete and inconsistent
information, and cannot deal with non monotonic reasoning. Possibilistic logic can rep-
resent and reason on uncertain, incomplete and inconsistent knowledge [3]. Moreover,
answer set programming is an efficient method to deal with non monotonic reasoning [4].

On the one hand, many researchers have focused their study on possibilistic description
logics in recent years [5]. Hollunder introduced uncertainty in terminological logics using
possibilistic logics, which is the first method for possibilistic description logics [6]. Subse-
quently, Dubois et al. proposed a new possibilistic description logic [7]. Moreover, Qi et
al. proposed possibilistic description logics, which are an extension of description logics
with possibilistic logics [8]. Moreover, Lesot et al. proposed a new algorithm to compute
the inconsistency degree of a possibilistic DL knowledge base [9].

On the other hand, the integration DLs and answer set programming has become
a central topic in recent years. Eiter et al. proposed description logic programs [10].
Subsequently, Shen et al. proposed well-justified FLP answer set for description logic
programs [11]. Motik and Rosati presented a hybrid formalism of MKNF knowledge bases
[12]. Moreover, Lukasiewicz proposed description logic program that combined fuzzy
description logics and fuzzy disjunctive logic programs [13]. Zou et al. proposed rough
description logic programs under the answer set semantics, which can model vagueness
information, and can deal with non monotonic reasoning at the same time [14].

However, the above possibilistic description logics and description logic programs can-
not deal with uncertain, incomplete, inconsistent information and non monotonic rea-
soning at the same time. Therefore, this paper aims to further extend description logic
programs such that they can model uncertain, incomplete and inconsistent information.
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In this paper, we propose tightly coupled possibilistic description logic programs under
the possibilistic answer set semantics. To our knowledge, this is the first such approach.
In this paper, we firstly define the syntax, semantics and possibilistic inferences. Then,
we show some semantic properties. Finally, we give two algorithms to compute the con-
sistency degree.

2. Possibilistic Description Logic Programs. Let Φ be a function-free first-order
vocabulary with nonempty finite sets of constant symbols ΦC and predicate symbols ΦP ,
Φc ⊆ IA ∪ ID. Let X be a set of variables. A term is either a variable from X or a
constant symbol from ΦC . An atom is an expression of the form h(t1, . . . , tn), where h is
a predicate symbol of arity n ≥ 0 from ΦP , and t1, . . . , tn are terms. We use M to denote
a set of atoms. A literal l is an atom a or a negated atom not a, where a ∈M .

Definition 2.1. A possibilistic atom is p = (a, δ), a ∈M , δ ∈ (0, 1]. Moreover, we define
the classical projection * and the necessity degree of p as follows: p∗ = a, pd = δ.

Definition 2.2. A possibilistic disjunctive rule (or simply possibilistic rule) r is

r = (a1 ∨ · · · ∨ ak ← b1 ∧ · · · ∧ bl ∧ not bl+1 ∧ · · · ∧ not bn, δ), (1)

where k ≥ 0, l ≥ 0, k + l > 0, {a1, · · · , ak, b1, · · · , bl, bl+1, · · · , bn} ⊆ M , and δ ∈ (0, 1].
Moreover, the classical projection * and the necessity degree of r is defined as follows:

r∗ = a1 ∨ · · · ∨ ak ← b1 ∧ · · · ∧ bl ∧ not bl+1 ∧ · · · ∧ not bn, rd = δ. (2)

Let PM be a set of possibilistic atoms in which every atom a occurs at most one time
in PM , that is to say, ∀a ∈ M , |{(a, δ) ∈ PM}| ≤ 1, δ ∈ (0, 1]. In general, we can write
r as a form of (A ← B+ ∧ not B−, δ), where A = a1 ∨ · · · ∨ ak, B+ = b1 ∧ · · · ∧ bl, and
B− = bl+1 ∧ · · · ∧ bn.

Definition 2.3. A possibilistic disjunctive logic program (possibilistic program) P is a
finite set of possibilistic rules. Let P ∗ = {r∗|r ∈ P}, and then P is normal possibilistic
program iff k = 1 for all rules in P ∗; P is a positive possibilistic program iff n = l for all
rules in P ∗.

Definition 2.4. A possibilistic description logic program (for short, possibilistic dl-progr-
am) KB = (L, P ) includes a possibilistic description logic knowledge base L and a possi-
bilistic program P . Moreover, KB is a normal possibilistic dl-program iff P is a normal
possibilistic program. KB is a positive possibilistic dl-program iff P is a positive possi-
bilistic program.

Now, we define the semantics of possibilistic dl-program under the possibilistic answer
set semantics. A term is ground iff it includes only constant symbols from ΦC . An atom
h(t1, . . . , tn) is ground iff all terms t1, . . . , tn are ground. We use PossG(P ) to denote all
possibilistic ground programs of a possibilistic program P .

Definition 2.5. A possibilistic atom p = (a, δ) is a possibilistic ground atom iff the atom
a is ground. r is possibilistic ground rule iff all atoms of r are possibilistic ground atoms.

Definition 2.6. A possibilistic ground instance of r is a possibilistic ground rule r′ =(
a′

1∨· · ·∨a′
k ← b′1 ∧ · · · ∧ b′l ∧ not b′l+1 ∧ · · · ∧ not b′n, δ

)
, where, a′

1, · · · , a′
k, b′1, · · · , b′l, b′l+1,

· · · , b′n are obtained by substituting constant symbol from ΦC for every variable appearing
in a1, · · · , ak, b1, · · · , bl, bl+1, · · · , bn respectively. A possibilistic ground program of a
possibilistic program P is a set of all possibilistic ground instances of possibilistic rules in
P .

Definition 2.7. The possibilistic Herbrand base relative to Φ, written as PHBΦ, is a
set of all possibilistic ground atom {p1, p2, . . . , pu}, for every possibilistic ground atom
pi = (hi(t1i, . . . , tni), δi), i = 1, 2, . . . , u, hi is a predicate symbol of arity n ≥ 0 from ΦP ,
and t1i, . . . , tni are constant symbols from ΦC, and δ ∈ (0, 1].
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Definition 2.8. A possibilistic interpretation I = {p′1, p′2, . . . , p′v} relative to possibilistic
dl-program KB = (L, P ) is a subset of PHBΦ.

Definition 2.9. Let I be a possibilistic interpretation relative to KB = (L, P ). Then
I is a possibilistic model of a possibilistic ground atom p = (a, δ), denoted I |− (a, δ),
if and only if (a, δ) ∈ I or there exists a possibilistic ground atom (a, δ′) ∈ I such that
δ ≤ δ′. I is a possibilistic model of a possibilistic ground rule r, denoted by I |− r, if
and only if, I |− (a, min{δ, β1, . . . , βl}) for some a ∈ H(r∗), if I |− (bi, βi), bi ∈ B+(r∗),
βi ∈ (0, 1], i = 1, 2, . . . , l, and I 0 (bj, βj), bj ∈ B−(r∗), βj ∈ (0, 1], j = l + 1, l + 2, . . . , n.
I is a possibilistic model of a possibilistic program P , denoted by I � P , if and only if
I |− r for all r ∈ PossG(P ).

Definition 2.10. Let I be a possibilistic interpretation relative to KB = (L, P ). Then
I is a possibilistic model of L, denoted I � L, if and only if there exists a possibilistic
distribution π for knowledge base L ∪ I such that π � L ∪ I.

Definition 2.11. Let I be a possibilistic interpretation relative to KB = (L, P ). Then I
is a possibilistic model of KB, denoted I � KB, if and only if I � L and I � P .

There may be many possibilistic models for KB = (L, P ). Let I1, I2 be two possibilistic
models of KB, then I1 e I2 = {(a, min{δ, δ′})|(a, δ) ∈ I1, (a, δ′) ∈ I2}, and I1 b I2 if and
only if I∗

1 ⊂ I∗
2 , or I∗

1 = I∗
2 and for any a ∈ I∗

1 , if (a, δ) ∈ I1 and (a, δ′) ∈ I2, then δ ≤ δ′.

Definition 2.12. Let I be a possibilistic model of KB. Then I is a least possibilistic model
of KB, if and only if there does not exist a possibilistic model I ′ of KB, such that I ′ b I.

Definition 2.13. A possibilistic reduction for P is defined as follows:

PPM∗ = {(A← B+, δ)|r = (A← B+ ∧ not B−, δ) ∈ P,B− ∩ PM∗ = ∅, B+ ⊆ PM∗}.
(3)

Moreover, a possibilistic reduction for KB = (L, P ) is KBPM∗ = (L, PPM∗).

Definition 2.14. Let I be a possibilistic interpretation relative to KB = (L, P ). Then
I is a possibilistic answer set of KB if and only if I is a least possibilistic model of
KBI∗ = (L, PI∗).

Let KB∗ = (L∗, P ∗) be the classical dl-program associated with KB = (L, P ), where
L∗ = {ϕ|(ϕ, β) ∈ L}, P ∗ = {r∗|r ∈ P}. KB is consistent if and only if KB∗ is consistent.

Definition 2.15. The strict α-cut of L is L>α = {(ϕ, β) ∈ L|β > α}, and the strict α-cut
of P is P>α = {r ∈ P |n(r) > α}. The strict α-cut of KB is KB>α = (L>α, P>α), α ∈
(0, 1].

Definition 2.16. The consistency degree of a possibilistic dl-program KB is

Consdegree(KB) =

{
0, if KB∗ is consistent
min{α|KB>α is consistent}, otherwise

(4)

Definition 2.17. A possibilistic atom (a, δ) is called credutions possibilistic consequence
of a possibilistic positive dl-program KB, denoted by KB �c (a, δ), if and only if, there
exists a possibilistic answer set I of KB such that I |− (a, δ).

Definition 2.18. A possibilistic atom (a, δ) is called skeptical possibilistic consequence
of a possibilistic positive dl-program KB, denoted by KB �s (a, δ), if and only if, for all
possibilistic answer set I1, I2, . . . , Im of KB such that I1 e I2 e . . . e Im |− (a, δ).
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3. Semantic Properties. In this section, we present some semantic properties.

Theorem 3.1. Let KB = (L, P ) be a possibilistic dl-program, and I be any possibilistic
answer set of KB. Then I is a least possibilistic model of KB.

Proof: I is a least possibilistic model of KBI∗ = (L, PI∗). So, I � L and I � PI∗ .
Thus, I � L and I |− r for all r ∈ PossG(PI∗). So I |− r for all r ∈ PossG(P ), I � L and
I � P . Thus, I is a possibilistic model of KB. Suppose that there exists a possibilistic
model J of KB such that J b I and J ̸= I. Then J � L and I |− r for all r ∈ PossG(P ).
So J |− r for all r ∈ PossG(PI∗). Thus, J is also a possibilistic model of KBI∗ . However,
this is a contradiction that I is a least possibilistic model of KBI∗ . As a result, I is a
least possibilistic model of KB.

Theorem 3.2. Let KB = (L, P ) be a positive possibilistic dl-program. I is a possibilistic
answer set of KB if and only if I is a least possibilistic model of KB.

Theorem 3.3. Let KB = (L, P ) be a possibilistic dl-program, and L = ∅. Then I is a
possibilistic answer set of KB if and only if I is a possibilistic answer set of P .

Proof: It is known that I is a possibilistic answer set of KB iff I is a least possibilistic
model of KBI∗ = (L, PI∗). So, I is a possibilistic model of KBI∗ , iff I � L, and I |− r
for r ∈ PossG(PI∗). Because L = ∅, then I is a possibilistic model of KBI∗ , iff I |− r for
r ∈ PossG(PI∗) iff I is a possibilistic model of PI∗ . Thus, I is a least possibilistic model
of KBI∗ iff I is a least possibilistic model of PI∗ .

Theorem 3.4. Let (a, δ) be a possibilistic ground atom of PHBΦ. Then for all possi-
bilistic answer set I of a positive possibilistic dl-program KB = (L, P ), I |− (a, δ) if and
only if for all possibilistic distribution π such that π � L ∪ PossG(P ), π � (a, δ).

Proof: It is known that the set of all possibilistic answer set of KB is equivalent to the
set of all least possibilistic model of KB. Thus, for (a, δ) ∈ PHBΦ, for all least possibilistic
model of KB, I |− (a, δ) iff for all possibilistic model of KB, J |− (a, δ). (⇒) Suppose
that for all possibilistic model J of KB, J |− (a, δ). Let π be any possibilistic distribution
such that π � L ∪ PossG(P ). Now, we define a possibilistic interpretation I ′ ⊆ PHBΦ

such that I ′ |− (b, β) iff π � (b, β). Let L′ = L ∪ I, then I ′ is a possibilistic model of L.
Because π � PossG(P ), then π � r for r ∈ PossG(P ). Thus, I ′ |− r for r ∈ PossG(P ).
So, I ′ is also a possibilistic model of P . Therefore, I ′ is a possibilistic model of KB.
According to I ′ |− (a, δ). So, π � (a, δ). (⇐) Suppose that for all possibilistic distribution
π such that π � L ∪ PossG(P ), π � (a, δ). Let I ⊆ PHBΦ be any possibilistic model
of KB. So, I � L, and I |− r for all r ∈ PossG(P ). Thus, there exists a possibilistic π′

such that π′ � L ∪ I. So, π′ � L, π′ � I. Moreover, π′ � r for all r ∈ PossG(P ), thus
π′ � PossG(P ). So, π′ � L ∪ PossG(P ). According to π′ � (a, δ), thus, (a, δ) ∈ I, or
there exists a possibilistic ground atom (a, δ′) ∈ I, such that δ′ ≤ δ. So, I |− (a, δ).

Theorem 3.5. Let KB = (L, P ) be a positive possibilistic dl-program, and (a, δ) be a
possibilistic ground atom of PHBΦ, and P = ∅. Then for all possibilistic answer set I of
KB, I |− (a, δ) iff for all possibilistic distribution π such that π � L, π � (a, δ).

4. Computing Consistency Degree. In this section, we first propose an algorithm
to compute the consistency degree of a possibilistic dl-program in Figure 1. Let KB =
(L, P ) be a possibilistic dl-program, where L = {(ϕi, βi)|βi ∈ (0, 1], i = 1, 2, . . . , n},
P = {r1, r2, . . . , rm}, α > Consdegree(KB). Then, L>α is consistent, but it does not
ensure that P>α is necessarily consistent. Therefore, we improve the Algorithm 1, and
present a new Algorithm 2 in Figure 2.

Theorem 4.1. Let KB = (L, P ) be a possibilistic dl-program, Con is the result computed
by Algorithm 1. Then Con is the consistency degree of KB.
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Figure 1. Algorithm 1

Figure 2. Algorithm 2

Proof: According to Algorithm 1, Con is returned at two cases, in the while loop and
outside of the while loop. With respect to the first case, L>Con is consistent and P>Con

is consistent. It is easy to know that Con is just the consistency degree of KB, i.e.,
Con = Consdegree(KB). Considering the second case, u = v, Con = Q(u) = Q(v),
L>Con = ∅ , P>Con = ∅. So, L>Con is consistent and P>Con is consistent, and thus Con is
the consistency degree of KB. In a word, Con is the consistency degree of KB.

Theorem 4.2. Let KB = (L, P ) be a possibilistic dl-program, Con is the result computed
by Algorithm 2. Then Con is the consistency degree of KB.

Proof: The proof is similar to proof of Theorem 4.1.

5. Conclusions. We have proposed tightly coupled possibilistic description logic pro-
grams under the possibilistic answer set semantics. Firstly, we provide the syntax, se-
mantics and possibilistic inferences of possibilistic dl-program. Secondly, we show that
the possibilistic answer set of possibilistic dl-program has a close relation with the least
model, and the possibilistic dl-program faithfully extends both possibilistic disjunctive
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logic program and possibilistic description logic. Finally, we present two algorithms com-
puting the consistency degree of a possibilistic dl-program, and prove the correctness of
the algorithms. In a word, possibilistic dl-program can well represent and reason a great
deal of real-word problems. Two interesting topics of future research are implementation
of the presented approach and extension of possibilistic dl-programs by a new semantics.
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