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Abstract. On the basis of Lyapunov stability, an adaptive sliding mode control (ASMC)
technique is developed to robustly synchronize fractional order model uncertain chaotic
systems with unknown parameters and disturbances. First, the presented sliding mode
controller is derived to asymptotically stabilize the error of state. Second, the designed
adaptive law guarantees convergence of the unknown parameters. Finally, simulation
results demonstrate that ASMC is simultaneously robust against modeling uncertainties,
unknown parameters, and external disturbances.
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1. Introduction. Chaotic phenomena exist in engineering, biological, chemical, and
physical systems; therefore, extensive applications for chaos control and synchronization
have been developed in past decades [1-3]. Chaotic behavior is present not only in integer
order dynamics but also in fractional order dynamics. Furthermore, some known systems,
such as those in secure communication, electronic systems, and control processing, can
be elegantly described using fractional calculus rather than using integer order calculus
[4-6].

Robust fractional order chaos synchronization is crucial [7]. However, developing a
practical robust control strategy is challenging [8]. Chaos systems are sensitive to ini-
tial conditions and demonstrate highly nonlinear dynamic behavior. In addition, these
systems always induce evitable model uncertainty, unknown parameters, time delay, or
disturbances that may deteriorate or even destroy the system synchronization. Many
related studies have recently been conducted. Using a backstepping control approach to-
gether with sliding mode control (SMC), a robust control technique has been established
to overcome model uncertainty in chaotic systems [9,10]. To minimize synchronization
error, unknown time delay chaos systems can be approximated using adaptive intelli-
gent networks [11]. An adaptive neural network [12] and adaptive sliding mode [13] were
investigated to solve chaotic systems with unknown parameters respectively. An observer-
based controller that guarantees that the error of state asymptotically converges to zero
was reported in [14,15]. When the assumed linear matrix inequality condition is satisfied,
the linear controller eliminates the synchronization error of unknown parameter systems
[16].

These advances in robust chaos synchronization are restricted to specific uncertainty
conditions; few studies have simultaneously considered multiple and complicated uncer-
tainty conditions. In this paper, a control scheme involving an adaptive control algorithm
with a sliding mode technique is presented for synchronizing fractional order model un-
certainty chaos systems with unknown parameters and disturbances.
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The paper is organized as follows. The problem statement and preliminaries are pre-
sented in Section 2. The main results of control scheme are described in Section 3. In
Section 4, a simulation example is illustrated to validate the designed controller and then
followed by the conclusions in Section 5.

2. Problem Statement and Preliminaries. In this section, we use both Riemann-
Liouville and Caputo fractional operators [17]. The Riemann-Liouville fractional deriva-
tive of order α is defined as

Dα
t f(t) =

dm

dtm

[
1

Γ(m − α)

∫ t

0

f(τ)

(t − τ)α−m+1
dτ

]
(1)

where m − 1 < α < m and m ∈ N . The variable Γ is the Gamma function.
The Riemann-Liouville fractional integral of order β is defined as

Jβf(t) =
1

Γ(β)

∫ t

0

(t − τ)β−1f(τ)dτ, β ∈ R+ (2)

where Γ is the Gamma function.
The Caputo fractional derivative of order α is defined as

Dα
t f(t) = Jm−αdmf(t) =

1

Γ(m − α)

∫ t

0

f (m)(τ)

(t − τ)α−m+1
dτ (3)

where m − 1 < α < m and m ∈ N . The variable Γ is the Gamma function.
Because the Caputo definition uses the same initial conditions as those in integer or-

der differential equations, it is widely used in engineering applications. Several general
properties of the fractional order calculus are used.

Property 1: For α = 0,
D0

t f(t) = f(t) (4)

Property 2: For α = n, where n is an integer,

Dn
t f(t) = d(n)f(t) (5)

where d(n) is a classical integer order derivative.
Property 3: Fractional order calculus satisfies the additive law of exponents.

Dα
t Dβ

t f(t) = Dα+β
t f(t), D1−α

t Dα
t f(t) =

d

dt
f(t) (6)

Property 4: Linear operation holds in fractional order calculus.

Dα
t [λ∗x(t) + µ∗y(t)] = λDα

t x(t) + µDα
t y(t) (7)

where λ and µ are real constants.

3. Main Results. Consider a class of fractional order uncertainty chaotic with unknown
parameters and disturbances described by

Dα
t x(t) = F (x)θ + f(x) + ∆f(x) + d(t) = Ax + f(x) + ∆f(x) + d(t) (8)

where 0 < α < 1, state vector x = (x1, x2, · · · , xn)T , F is a function matrix, f is a function
vector, ∆f is the model uncertainty, d(t) is the external disturbance, θ is an unknown
parameter vector, and A is an unknown constant matrix.

Let the master system be system (8) and then the slave system is defined as

Dα
t y(t) = F (y)θ̂ + f(y) + u = Âx + f(x) + u (9)

where state vector y = (y1, y2, · · · , yn)T , θ̂ denotes the estimate parameter vector, and Â
denotes the estimated constant matrix.

The following necessary assumptions must be made for synchronizing systems (8) and
(9).
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Assumption 1: Suppose the model uncertainty and disturbance can be described as a
bound matrix M(t, y). The upper bound of the matrix M(t, y) is γ:

M(t, y) = ∆f(y) + d(t); ∥M(t, y)∥ ≤ γ

Assumption 2: Suppose unknown constant matrix Â and function vector f obey the
basis of the boundedness character of chaotic systems. They exist in an upper bound:∥∥Â

∥∥ ≤ α

Bx,y(y − x) = f(y) − f(x)

∥Bx,y∥ ≤ β

Let the synchronization error be e = y − x and the estimated parameter error be
eθ = θ̂ − θ. The error system is

dαe

dtα
=

(
Â + Bx,y

)
e + F (x)eθ + ∆f(y) + d(t) + u (10)

Assumption 3: The error e = y − x satisfies the Lipschitz conditions [18]. A positive
number l exists such that ∥e∥ ≤ l∥s∥.

Design sliding surface s = J1−α
t e. According to Property 3, we have ṡ = Ds = Dα

t e.
Suppose that Assumptions 1, 2, and 3 hold, then, the error system (10) is asymptotically

stable if and only if the following controller and adaptive laws are chosen.
Controller:

u = −ks − γ ∗ sign(s) (11)

Adaptive law:

k̇ = σ|s| (12)

˙̂
θ = −F T (x)sign(s) (13)

where σ is an arbitrary positive constant.
Proof: Consider the following Lyapunov candidate function:

V = |s| + eT
θ eθ

2
+

(k − k∗)2

2σ
(14)

where positive constant k∗ ≥ ∥α + β∥.
The time derivative of V is

V̇ = sign(s)ṡ + ėT
θ eθ + (k−k∗)k̇

σ

= sign(s)
[(

Â + Bx,y

)
e + F (x)eθ + ∆f(y) + d(t) + u

]
− sign(s)F (x)eθ + (k − k∗)|s|

= sign(s)
[(

Â + Bx,y

)
e + M(t, y) − γ ∗ sign(s)

]
− k∗|s|

≤ l(α + β)s ∗ sign(s) − k∗|s|
= [l(α + β) − k∗] ∗ |s| ≤ 0

Because V̇ is negative semi definite, all state variables are bounded. Using the Barbalat
lemma, if s, ṡ ∈ L∞, as t → ∞, s approach zero. Consequently, the global synchronization
of systems (8) and (9) is completed.

4. Applications. The following example is demonstrated to illustrate the effectiveness of
the proposed methodology. The Grunwald-Letnikov definition of fractional order calculus
is used in the numerical simulation [7].

Let us consider the non-commensurate fractional order model uncertainty Chen system
with unknown parameters and disturbances described in [15]:

Dα1
t x1 = a(x2 − x1) + d1(t)

Dα2
t x2 = −7x1 + cx2 − x1x3 + d2(t) (15)
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Dα3
t x3 = x1x2 − bx3 + ∆f3(t, x1, x2) + d3(t)

where a, b, c are unknown parameters, ∆f(t,X) is model uncertainty, and di (i = 1, 2, 3)
is the disturbance.

When (a, b, c) = (35, 3, 28), (α1, α2, α3) = (0.95, 0.96, 0.97), ∆f3 = 0.1 sin(t)x1x2, and
disturbance vector (d1, d2, d3) = (0.3G, 0.3G, 0.3G), where G is the Gaussian noise. Figure
1 shows the phase portrait of the fractional order Chen system (15).

Figure 1. Phase portrait of the fractional order Chen system with
(α1, α2, α3) = (0.95, 0.96, 0.97)

The slave system is described as

Dα1
t y1 = â(y2 − y1) + u1

Dα2
t y2 = −7y1 + ĉy2 − y1y3 + u2 (16)

Dα3
t y3 = y1y2 − b̂y3 + u3

where
(
â, b̂, ĉ

)
are estimations of the unknown parameters (a, b, c), and (u1, u2, u3)

T are

the controller vectors.
According to the controller scheme (11), the controllers are

u1 = −ks1 − γ ∗ sign(s1), u2 = −ks2 − γ ∗ sign(s2), u3 = −ks3 − γ ∗ sign(s3)

and the adaptive law is represented as

k̇ = σ[|s1| + |s2| + |s3|]
˙̂a = −(x2 − x1)sign(s1)

˙̂
b = x3sign(s3)

˙̂c = −x2sign(s2)

where si = J1−α
t ei and ei = yi − xi (i = 1, 2, 3).

In the simulation, the parameters are chosen as γ = 30, σ = 1, and
(
â, b̂, ĉ

)
=

(40, 2, 22). Initial conditions of the master and slave system are set as x(0) = (0.2, 0.5, 0.6)T

and y(0) = (1,−2, 3)T , respectively.
The numerical results of the synchronization error between master and slave and the

estimated parameters
(
â, b̂, ĉ

)
of the unknown system are shown in Figure 2. The results
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Figure 2. Synchronization errors between the master and slave systems
and estimated parameters of the unknown chaos system

demonstrate that the proposed control scheme not only facilitates uncertainty chaotic
system synchronization but also estimates the unknown system parameters.

5. Conclusions. Practically, evitable uncertainties and disturbances always exist in sys-
tems. The parameters of chaos system are always unknown. In this study, a robust adap-
tive SMC control is proposed to synchronize non-commensurate fractional order model
uncertainty chaotic systems with unknown parameters and disturbances. Numerical re-
sults show that the merit of the proposed scheme is feasible and that model uncertainty,
unknown parameters, and external disturbances of the system are fully accounted for.
The future research work will extend control law from 3 control signals (u1, u2, u3) into
single control signal u.
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