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Abstract. Recent advances employing the image sensor array include synthesizing

novel views from the captured images, increasing field-of-view, and implementation in

the infrared. This paper presents a system that captures a sequence of low resolution

images from an image sensor array to construct a more detailed high resolution image.

The proposed system is able to increase the angular resolution beyond the Nyquist limit.

Synthetic and non-synthetic images are used to evaluate the performance of the proposed

system. The results show that robust recovery of high resolution images can be obtained

by our system. The proposed system can be employed to a wide area of image processing

applications such as remote sensing, robotic vision, and infrared image enhancement.

Keywords: Sensor array, Super resolution, Response function, HR reconstruction

1. Introduction. High-resolution (HR) imaging systems are constantly required in many
application fields, such as video surveillance [1] and remote sensing [2]. However, due to
the limitation of hardware and imaging environment, in some cases, it is difficult to obtain
images at a desired resolution level. To increase the resolution, there is a fundamental limit
on the smallest size of the focus spot one can reach with conventional optics. The limit
originates from the light diffraction, which is around one-half wavelength of the light
∼ λ/2. In the last few decades, efforts have been made to overcome the diffraction limit.
One promising method called super-resolution (SR) [3-5] has been introduced to recover
the details of an image from a sequence of low resolution (LR) images.

In traditional SR methods, multiple scenes are always obtained from one camera with
several captures; however, multiple cameras located in different positions, such as sen-
sor arrays [6], can also acquire multiple frames. The use of an array of image sensor,
LR imagers enable a significant reduction in the depth of the imaging system by a fac-
tor equal to the number of lenslets used across the detector array. Many camera arrays
have been proposed to capture images simultaneously from multiple viewpoints. Recent
advances employing multiple imaging sensors include improvements in signal processing,
implementation in the infrared, and increasing field of view. However, none of these deal
the angular resolution limit due to use of a single-detector array. Here we introduce a
multiaperture imaging system implemented using an image sensor array.

This paper presents an efficient way to enhance image resolution using our image sensor
array. We show that the proposed system performs well for different noise levels. The
rest of the paper is organized as follows. In Section 2, we introduced our system model
by discussing the response function of the imaging system. In Section 3, both synthetic
and non-synthetic images are used to evaluate the performance of the proposed system.
Finally, conclusions from this study are provided in Section 4.
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2. Response Function and the Sensor Array. The response function [7], which con-
tains useful information about apparent sampling artifacts in the image, describes the
spatial frequency transfer function of an imaging system. Similar to the approach utilized
in nonsampled imaging system, the response of the sampled system can be derived by
considering the system response as a point source. We separate the whole image forma-
tion process into two steps including the pre-sampling step and sampling components step
for most sampled imaging systems. Hopt is denoted as optical transfer function and Hpix

is denoted as pixel transfer function, both of which describe the pre-sampling component
accounting for the spatial frequency filtering due to the finite size of the sensors in Fourier
domain.

Hpix(fs) = sinc(mfs) =
sin (πmfs)

πmfs

(1)

where fs is the spatial frequency and m is the full width of the pixel.
The sampling component of the response function can be represented by a comb of delta

functions with sampling frequency fp = 1/X, where X is the interval between sampling
points, which yields,

Λ (fs) =
∑

n

δ (fs − nfp) (2)

We multiply the three transfer functions Hopt, Hpix, and Λ in the frequency domain to
yield a combined response function for the imaging and sampling process,

R (fs, φ) = Hpix (fs)
∑

n

(fs − nfp) e(inφ) (3)

We can observe from (3) that the sampling process replicates Hopt at nfp. All of the
replicated spectra are multiplied by Hpix centered at fs = 0 to yield the final spectrum.
Due to the fact that each spectrum varies in phase from the neighbor spectrum by the
sample phase increment φ, the sampled response function R (fs, φ) will depend on the
relative position of the sampling points and the pre-sampled point-spread function (PSF).
There are two contributions of the mathematical derivation of the sampling process to
R (fs, φ): a spurious response and a transfer function. The spurious response component
is determined by multiplying Hpix by all the spectra except the one located at n = 0, and
is conditioned by fp and φ. The transfer function is independent of the sampling interval
and it is simply the product of the Hopt and Hpix. The overlapped region between the
baseband spectrum and the spurious response varies with the sampling frequency and is

(a) (b)

Figure 1. (a) Image sensor array schematic. (b) Prototype of the proposed
model. The array consists of 16 image sensors, and each of the imager has
a 60 degree FOV. These sensors are independent with each other forming
almost overlapped LR images.
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the main indicator of the magnitude of the sampling artifact in the image. If the sampling
frequency is small, the spurious response will totally corrupt the baseband.

Since none of the existing camera arrays would have both the functioning and position-
ing flexibility that our system required. Therefore, we build our imaging sensor arrays
ourselves. Shown in Figure 1 is the sensor array we used in our system. We incorpo-
rate existing technology as much as possible to simplify hardwares our system needed for
operation. The choice of the image sensor is a critical decision since it determines the
performance of the system as well as the cost. 16 inexpensive sensors and lenses with a
common field of view which is around 60◦ are used, and these sensors form an array of
discrete and independent, almost overlapped LR images.

HR reconstruction makes use of information obtained from LR images recorded in these
sensors to produce an HR image. Useful information from all LR images is reached by
calculating subpixel displacements so that the sampling displacements δk must vary among
low resolution sensors. For an N ×N image sensor array, the ideal displacements between
adjacent LR sensors are ∆dk = dk+1 − dk = ±1/ (Nfs). So we can get the sampling offset
which is

∆d = f
D

R
(4)

where R is the range of the object, and f is the focal length of lenslets spaced on an array
of period D.

3. Main Results. We have conducted a number of experiments with two types of data
including synthetic images and real images obtained using our model to test the perfor-
mance of the proposed sytem. For the synthetic experiment, we first calculate the pixel
displacement errors and rotation errors using feature based subpixel registration algo-
rithm. Then for the performance evaluation, peak signal to noise ratio and structural
similarity index measure (SSIM) with different noise levels are calculated. For the real
data, we reconstruct the HR image using a sequence of LR images obtained using our
system and we also tested how well our system performs under various numbers of frames.

The experimental results are first presented using synthetic images. 12 synthetic LR
images have been generated from an HR image shown in Figure 2(a). The sequence of LR
frames of 60× 60 pixels from the original image is generated as following steps. First, we
convolve the HR image with a Gaussian blur kernel to simulate the effect of camera PSF.
Then, the resulting image was downsampled by the factor of 2 in horizontal and vertical
direction. The same approach with different warping operations was used to produce 12
LR images.

(a) (b) (c) (d)

Figure 2. An example of synthetic HR reconstruction using proposed sys-
tem: (a) original HR image, (b) LR image enlarged with nearest neighbor
interpolation, (c) LR image enlarged with bicubic interpolation, (d) recon-
structed HR image
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LR images are further degraded by additive white noise with noise power 10 dB, 15 dB,
20 dB, and 30 dB. Figure 2(b) shows one of 12 synthetic LR images. HR images obtained
by bicubic interpolation and super resolution using our system are shown in Figures 2(c)
and 2(d), respectively. We see from Figure 2 that the quality of the reconstructed image
by the proposed mechanism is better than traditional bicubic interpolation which means
our system can actually improve the image quality.

For the performance evaluation between the original HR and SR reconstructed images,
the quality of the reconstructed HR images has been quantitatively measured in terms of
the PSNR, which measures denoising effectiveness. We then test the performance of our
system under various noise levels. Figure 3(a) shows the PSNR at different noise levels
with different amounts of frames. The high value of the PSNR demonstrates the effective-
ness of the SR scheme. Our mechanism is able to produce fine details and recover major
image structure even under heavy noise. However, traditional interpolation methods such
as nearest neighbor or bicubic interpolation can only increase the amount of pixels with-
out reconstructing the details of the image or denoising. Note that the performance drops
as the noise level increases are consistent with our theoretical analysis.

(a) (b)

Figure 3. (a) PSNR at different noise levels, (b) SSIM at different noise levels

To evaluate the spatial-temporal inconsistency of the reconstructed HR image, struc-
tural similarity index measure (SSIM), which measures visual similarity between images,
is also used to evaluate the performance of our system. Figure 3(b) shows the SSIM value
at different noise levels with different amounts of frames. As we can see in the figure,
when the power of additional noise increases, the SSIM value of each restored SR images
becomes worse. The result is consistent with PSNR which indicates that our system is
able to recover details even under very heavy noise which means the proposed method is
robust to the noise.

In the non-synthetic experiment, we use a dataset containing 16 frames shown in Figure
4(a) to illustrate the effectiveness of proposed mechanism. In order to present the perfor-
mance of proposed system more comprehensively, we amplify the same region for the frame
before super resolution shown in Figure 4(b) and the frame after super resolution shown
in Figure 4(c). The rectangular regions in Figures 4(b) and 4(c) are enlarged and shown in
the associated images for closer observation. For the LR frame, it is stretched using bicu-
bic interpolation to the same size as the HR frame. For SR algorithm, the reconstructed
image should preserve the edges, texture, contrast invariance and geometric invariance of
the input image. Through the comparison of the LR image and the reconstructed image
shows that our method provides obvious good subjective visual quality with rich textures
and sharp edges, and the increase in resolution and image quality is evident. Either the
increased effective sampling frequency, or the diffraction limit of individual sensor limits
the achievable increase in resolution. In practice, the resolution increase is also determined
by optical distortion, sub-pixel registration accuracy, and degree of redundancy.
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Figure 4. An example of non-synthetic HR reconstruction using proposed
system: (a) 16 LR frames obtained by our system, (b) one of 16 LR im-
ages enlarged with bicubic interpolation, (c) reconstructed HR image using
proposed SR algorithm, (d) RMS with different number of frames

We have also tested the performance of our system under various numbers of frames.
Figure 4(d) shows the root-mean-square error (RMSE) between the image reconstructed
using 16 frames and the image reconstructed using a subset of 16 frames is utilized to
explore the relationship between image quality and the number of frames is used. As
can be seen from the figure, the magnitude of aliasing artifacts is clearly reduced with
increasing number of frames.

4. Conclusions. A novel image sensor array that captures a sequence of LR images to
construct a more detailed HR image is presented in this paper. The proposed model can
increase the image resolution obtained by a camera array beyond the Nyquist limit. The
results of the experiment with synthetic and non-synthetic images show that proposed
model is able to recover the image at different noise levels even if the noise is very high.
The proposed system can be employed to a wide area of image processing applications
such as remote sensing, robotic vision, and infrared image enhancement.
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