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Abstract. This paper proposes the H∞ control approach for sampled-data systems with
information constraints. The signals at the sensor-controller side and the ones at the
controller-actor side are quantized, respectively. Within the recently reported sampled-
data systems’ framework, considering logarithmic quantizer, a unified framework of the
closed-loop model is given. By Lyapunov functional approach, the H∞ performance anal-
ysis and H∞ controller design conditions are derived, which are in terms of LMI. An
example is used to show the advantages of the proposed methods. The simulation re-
sults show that the proposed approach can maintain the corresponding closed-loop system
asymptotically stable and obtain a given disturbance attenuation level.
Keywords: Sampled-data control systems, Quantization, Time-varying sampling, H∞
control

1. Introduction. The sampled-data control systems simultaneously contain continuous-
time and discrete-time signals, which make the closed-loop systems hybrid. A typical
sampled data system is networked control system. Because of the rapid growth of the
digital hardware technologies, the sampled-data control method has been more important
than other control approaches. Some researchers have applied the sampled-data control
scheme to solving control problems in various systems such as delay systems [1, 2], chaotic
systems [3], dynamical networks [4], and networked control systems [5]. Recently, some
research focuses on the sampled-data control problems of linear systems [6, 7]. Moreover,
a series of work on stability, robust control, H2 control, H∞ control and filtering problems
for the sampled-data control systems have been investigated. Recently, [8] investigated
sampled-data state-feedback stabilization and sampled-data output-feedback H∞ control
problem of linear systems via Lyapunov-Krasovskii functionals and descriptor approach.
[9] investigated sampled-data H∞ control and filtering problem of linear systems based on
descriptor approach. [10] gave a refined sampled-data control approach. However, all the
above literature considered that the information of sampled-data systems is not limited.
In fact, in many sampled-data systems, when measurements to be used for feedback are
transmitted by a digital communication channel, data are quantized before transmission.
Therefore, to achieve better performance of the considered systems, the effect of data
quantization on the systems should be taken into consideration. This motivates the
present study. To the best of the author’s knowledge, the sampled-data control systems
with information constraints have not been fully investigated and still remain challenging.

The rest of the paper is organized as follows. In Section 2, we first introduce the
characteristics of sampled-data systems with information constraints, and then develop
the model of sampled-data system to describe both time-varying sampling and signal
quantization in a unified framework. Sections 3 deals with the stability analysis and
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controller design of the sampled-data systems, respectively. The proposed approach is
illustrated in Section 4 through a numerical example. Section 5 concludes the paper.

2. Problem Formulation. Consider the following system:

ẋ(t) = Ax(t) + Bu(t) + Bωω(t), (1)

z(t) = Cx(t) + Du(t), (2)

where x(t) ∈ Rn is the system state, ω(t) ∈ Rm is the disturbance, u(t) ∈ Rp is the
control input, and z(t) ∈ Rq is the controlled output. A, B, Bω, C, D are some constant
matrices of appropriate dimensions.

Figure 1. Structure of the sampled-data control systems with two quantizers

In this paper, both the state and control input signals are quantized before they are
sent to the controller and actuator respectively. Figure 1 shows the structure of sampled-
data control system with two quantizers. At the same time, it is assumed that the sensor
and sampler is clock-driven, while the controller, ZOH (zero-order holder), actuator and
quantizers are event-driven. The sampling intervals are time-varying and the sampling
instants are denoted as sk, k = 1, · · · ,∞. The control input x̄(sk) satisfies that

x̄(sk) = g(x(sk)). (3)

Define the zero-order holder control action

uc(t) = f(ud(sk)) = f(Kx̄(sk)), sk ≤ t < sk+1, (4)

where K is the feedback gain to be determined. f(·) and g(·) are two logarithmic quantiz-
ers. The definition of logarithmic quantizers has been described by [11]. ud is a discrete-
time control signal and the time sk is the sampling instant satisfying 0 = s0 < s1 < · · · <
sk < · · · . The sampling interval Tk = sk+1 − sk may vary but it is bounded.

0 < Tm ≤ Tk ≤ TM . (5)

The digital control law may be represented as follows by using input delay approach [8]:

uc(t) = f(Kg(x(sk)))f(Kg(x(t − τ(t)))), sk ≤ t < sk+1, (6)

where τ(t) = t − sk is piecewise linear with the derivative τ̇(t) = 1 for t ̸= sk. The
piecewise-constant control law (6) can be represented as a continuous-time controller
with a time-varying piecewise continuous delay:

u(t) = f(Kg(x(t − d(t)))), sk ≤ t < sk+1, (7)
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where d(t) = t−sk is piecewise linear with the derivative ḋ(t) = 1 for t ̸= sk. It is assumed
that d(t) is bounded that satisfies Tm ≤ d(t) ≤ TM .

In terms of the method given in [11]. Define ∆f = diag(∆f1, ∆f2, . . . , ∆fm), ∆g =
diag(∆g1, ∆g2, . . . , ∆gn). Then, f(·) and g(·) can be written as

f(ud) = (I + ∆f )ud, (8)

g(x) = (I + ∆g)x, (9)

where I denotes the identity matrix of appropriate dimensions. For simplicity, it is as-
sumed that ∆fi

∈ [−δf , δf ] and ∆gj
∈ [−δg, δg]. Combining (8) and (9), and substituting

the controller (7) into systems (1) and (2), we can obtain the closed-loop sampled-data
control system:

ẋ(t) = Ax(t) + B(K + ∆(K))x(t − d(t)) + Bωω(t), sk ≤ t < sk+1, (10)

z(t) = Cx(t) + D(K + ∆(K))x(t − d(t)), sk ≤ t < sk+1, (11)

where ∆(K) = ∆fK + K∆g + ∆fK∆g.
Our objective is to find a state-feedback controller K, which stabilizes systems (1) and

(2) with ω(t) = 0 and makes it satisfy

J =

∫ ∞

0

(
zT (t)z(t) − γ2ωT (t)ω(t)

)
dt < 0, (12)

for x(0) = 0 and all ω(t) ̸= 0. The scalar γ is a prescribed positive scalar and indicates
an H∞ disturbance attenuation level.

3. Main Results.

3.1. Robust H∞ performance analysis for the sampled-data control systems
with information constraints.

Theorem 3.1. For given scalars Tm, TM , δf > 0, δg > 0, 0 ≤ α < 1, γ > 0, and a
matrix K, the closed-loop sampled-data system (10) and (11) is asymptotically stable with
an H∞ disturbance attenuation level γ if there exist matrices P = P T > 0, Qm = QT

m > 0
(m = 1, 2, 3), Zj = ZT

j > 0 (j = 1, 2, 3), and Ni, Ti, Mi, Ei, Li (i = 1, 2, 3, 4, 5, 6) such
that

Γ =



Γ1 Γ2 BT Z1 BT Z2 BT Z3 CT

∗ Γ3 0 0 0 0
∗ ∗ − 1

TM−Tm
Z1 0 0 0

∗ ∗ ∗ − 1
TM

Z2 0 0

∗ ∗ ∗ ∗ − 1
TM

Z3 0

∗ ∗ ∗ ∗ ∗ −I

 < 0, (13)

where

Γ1 =


Γ11 Γ12 Γ13 Γ14 Γ15 Γ16

∗ Γ22 Γ23 Γ24 Γ25 Γ26

∗ ∗ Γ33 Γ34 Γ35 Γ36

∗ ∗ ∗ Γ44 Γ45 Γ46

∗ ∗ ∗ ∗ Γ55 Γ56

∗ ∗ ∗ ∗ ∗ Γ66

 , Γ2 =


N1 T1 M1 E1 L1

N2 T2 M2 E2 L2

N3 T3 M3 E3 L3

N4 T4 M4 E4 L4

N5 T5 M5 E5 L5

N6 T6 M6 E6 L6

 ,

Γ3 = diag

{
− 1

αTM

Z1−
1

(1 − α)TM

Z1−
1

TM − Tm

(Z1 + Z2)−
1

TM

Z2−
1

TM

Z3

}
,

Γ11 = PA + AT P +
3∑

i=1

Qi + N1 + NT
1 + L1 + LT

1 ,

Γ12 = P (BK + ∆(K)) + NT
2 − T1 + M1 − E1 + LT

2 ,
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Γ13 = E1 + NT
3 + LT

3 , Γ14 = −M1 + NT
4 + LT

4 , Γ15 = T1 − N1 + NT
5 + LT

5 ,

Γ16 = NT
6 + LT

6 , Γ22 = M2 + MT
2 − T2 − T T

2 − E2 − ET
2 , Γ23 = E2 + MT

3 − T T
3 − ET

3 ,

Γ24 = − M2 + MT
4 − T T

4 − ET
4 , Γ25 = T2 + N2 + MT

6 − T T
6 − ET

6 ,

Γ26 = MT
5 − T T

5 − ET
5 , Γ33 = −Q1 + E3 + ET

3 , Γ34 = −M3 + ET
4 − L3,

Γ35 = T3 − N3 + ET
5 , Γ36 = ET

6 , Γ44 = −Q2 − M4 − MT
4 , Γ45 = T4 − N4 − MT

5 − LT
5 ,

Γ46 = − MT
6 − LT

6 , Γ55 = −(1 − α)Q3 + T5 − N5 + T T
5 − NT

5 ,

Γ56 = T T
6 − NT

6 , Γ66 = −γ2I,

B =
[

A B(K + ∆(K)) 0 0 0 Bω

]
, C =

[
C D(K + ∆(K)) 0 0 0 0

]
.

Proof: Consider the following Lyapunov-Krasovskii functional

V (t) =V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t), (14)

where

V1(t) = xT (t)Px(t), V2(t) =

∫ t

t−Tm

x(s)T Q1x(s)ds, V3(t) =

∫ t

t−TM

x(s)T Q2x(s)ds,

V4(t) =

∫ t

t−αd(t)

x(s)T Q3x(s)ds, V5(t) =

∫ 0

−TM

∫ t

t+β

ẋT (s)Z1ẋ(s)dsdβ,

V6(t) =

∫ −Tm

−TM

∫ t

t+β

ẋT (s)Z2ẋ(s)dsdβ, V7(t) =

∫ 0

−TM

∫ t

t+β

ẋT (s)Z3ẋ(s)dsdβ,

P = P T > 0, Qm = Qm
T > 0 (m = 1, 2, 3), Zj = Zj

T > 0 (j = 1, 2, 3).

1) For tk < t < tk+1, calculating the derivative of V (t) with respect to t along the
solutions of the system (10) and (11) and using Leibniz-Newton formula, it yields that

V̇ (t) + zT (t)z(t) − γ2ωT (t)ω(t)

= 2xT (t)Pẋ(t) +
3∑

i=1

xT (t)Qix(t) − xT (t − Tm)Q1x(t − Tm) − xT (t − TM)Q2x(t − TM)

−
(
1 − αḋ(t)

)
xT (t − αd(t))Q3x(t − αd(t)) + ẋT (t)(TMZ1 + h12Z2 + TMZ3)ẋ(t)

−
∫ t

t−αd(t)

ẋT (s)Z1ẋ(s)ds −
∫ t−αd(t)

t−d(t)

ẋT (s)Z1ẋ(s)ds −
∫ t−d(t)

t−TM

ẋT (s)(Z1 + Z2)ẋ(s)ds

−
∫ t−Tm

t−d(t)

ẋT (s)Z2ẋ(s)ds −
∫ t

t−TM

ẋT (s)Z3ẋ(s)ds + z(t)T z(t) − γ2ωT (t)ω(t)

≤ 2xT (t)P (Ax(t) + BKx(t − d(t)) + Bωω(t)) +
3∑

i=1

xT (t)Qix(t)

− xT (t − Tm)Q1x(t − Tm) − xT (t − TM)Q2x(t − TM)

− (1 − α)xT (t − αd(t))Q3x(t − αd(t)) + ẋT (t)(TMZ1 + (TM − Tm)Z2 + TMZ3)ẋ(t)

−
∫ t

t−αd(t)

ẋT (s)Z1ẋ(s)ds −
∫ t−αd(t)

t−d(t)

ẋT (s)Z1ẋ(s)ds −
∫ t−d(t)

t−TM

ẋT (s)(Z1 + Z2)ẋ(s)ds

−
∫ t−Tm

t−d(t)

ẋT (s)Z2ẋ(s)ds −
∫ t

t−TM

ẋT (s)Z3ẋ(s)ds

+ 2ζT (t)N

[
x(t) − x(t − αd(t)) −

∫ t

t−αd(t)

ẋ(s)ds

]
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+ 2ζT (t)T

[
x(t − αd(t)) − x(t − d(t)) −

∫ t−αd(t)

t−d(t)

ẋ(s)ds

]

+ 2ζT (t)M

[
x(t − d(t)) − x(t − TM) −

∫ t−d(t)

t−TM

ẋ(s)ds

]

+ 2ζT (t)E

[
x(t − Tm) − x(t − d(t)) −

∫ t−Tm

t−d(t)

ẋ(s)ds

]
+ 2ζT (t)L

[
x(t) − x(t − TM) −

∫ t

t−TM

ẋ(s)ds

]
+ (Cx(t) + DKx(t − d(t)))T (Cx(t) + DKx(t − d(t))) − γ2ωT (t)ω(t)

≤ ζT (t)
(
Γ1+αTMNZ−1

1 NT +(1−α)TMTZ−1
1 T T + h12M(Z1 + Z2)

−1MT

+ h12EZ−1
2 ET + TMLZ3

−1LT + BT (TMZ1 + (TM − Tm)Z2 + TMZ3)B + CTC
)
ζ(t)

−
∫ t

t−αd(t)

H1Z
−1
1 H1

T ds −
∫ t−αd(t)

t−d(t)

H2Z
−1
1 H2

T ds −
∫ t−d(t)

t−TM

H3(Z1 + Z2)
−1H3

T ds

−
∫ t−Tm

t−d(t)

H4Z
−1
2 H4

T ds −
∫ t

t−TM

H5Z
−1
3 H5

T ds,

where

H1 = ζT (t)N + ẋT (s)Z1, H2 = ζT (t)T + ẋT (s)Z1,

H3 = ζT (t)M + ẋT (s)(Z1 + Z2), H4 = ζT (t)E + ẋT (s)Z2, H5 = ζT (t)L + ẋT (s)Z3,

ζ(t) =
[

xT (t) xT (t − d(t)) xT (t − Tm) xT (t − TM) xT (t − αd(t)) ωT (t)
]T

,

N =
[

NT
1 NT

2 NT
3 NT

4 NT
5 NT

6

]T
,

T =
[

T T
1 T T

2 T T
3 T T

4 T T
5 T T

6

]T
, M =

[
MT

1 MT
2 MT

3 MT
4 MT

5 MT
6

]T
,

E =
[

ET
1 ET

2 ET
3 ET

4 ET
5 ET

6

]T
, L =

[
LT

1 LT
2 LT

3 LT
4 LT

5 LT
6

]T
.

By the Schur complements, combine (13) to obtain V̇ (t) + zT (t)z(t) − γ2ωT (t)ω(t) < 0
for all tk < t < tk+1. On the other hand, we prove the asymptotic stability of system
(10). In this case, the external perturbation ω(t) is assumed to be zero. Then, using the
Lyapunov functional (14), by Schur complements, it follows from (13) that there exists a
scalar ε > 0 such that V̇ (t) ≤ −ε∥x(t)∥2. This implies that system (10) with ω = 0 is
asymptotically stable for tk < t < tk+1.

2) It is noting that d(tk) = tk − sk, ∀k ∈ N , d(t−k ) = tk − sk−1, ∀k ∈ N .
The value of x before and after tk pionts remains unchanged (since x(t) is continuous).

Then, we have Vi(t
−
k ) = Vi(tk) (i = 1, 2, 3, 5, 6, 7) in Lyapunov-Krasovskii functional

(14). Moreover, for V4(t), there exists V4(t
−
k ) ≥ V4(tk). Thus, V (t−k ) ≥ V (tk) for k =

0, 1, 2, 3, · · · .
For t ∈

[
tk, tk+1

)
, we have

V (t) − V (tk) ≤
∫ t

tk

−zT (s)z(s) + γ2ωT (s)ω(s)ds.

It follows that ∥z(t)∥2 ≤ γ∥ω(t)∥2. This completes the proof.
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3.2. H∞ controller design for the sampled-data control systems with informa-
tion constraints. This section is devoted to solving the problem of H∞ controller design
for sampled-data systems (10) and (11). The following theorem presents the conditions
for existence of the desired controller.

Theorem 3.2. Consider the sampled-data in Figure 1. For given scalars Tm, TM , δg > 0,
δf > 0, 0 ≤ α < 1, 0 ≤ εi < 1 (i = 1, 2, 3) the closed-loop system (10) and (11) is
asymptotically stable with an H∞ disturbance attenuation level γ if there exist matrices
X = XT > 0, Q̃i = Q̃T

i > 0 (i = 1, 2, 3), Z̃j = Z̃T
j > 0 (j = 1, 2, 3), Ñl, T̃l, M̃l, Ẽl, L̃l

(l = 1, 2, 3, 4, 5, 6), and Y of appropriate dimensions, such that Ξ B̃ Ỹ
∗ − 1

γ1
I 0

∗ ∗ − 1
γ2

I

 < 0, (15)

where

Ξ =



Ξ1 Ξ2 AL AL AL CL

∗ Ξ3 0 0 0 0

∗ ∗ 1
σ̄
(Z̃1 − 2X) 0 0 0

∗ ∗ ∗ 1
σ
(Z̃2 − 2X) 0 0

∗ ∗ ∗ ∗ 1
σ
(Z̃3 − 2X) 0

∗ ∗ ∗ ∗ ∗ −I

 , (16)

Ξ1 =


Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16

∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26

∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36

∗ ∗ ∗ Ξ44 Ξ45 Ξ46

∗ ∗ ∗ ∗ Ξ55 Ξ56

∗ ∗ ∗ ∗ ∗ Ξ66

 , Ξ2 =



Ñ1 T̃1 M̃1 Ẽ1 L̃1

Ñ2 T̃2 M̃2 Ẽ2 L̃2

Ñ3 T̃3 M̃3 Ẽ3 L̃3

Ñ4 T̃4 M̃4 Ẽ4 L̃4

Ñ5 T̃5 M̃5 Ẽ5 L̃5

Ñ6 T̃6 M̃6 Ẽ6 L̃6

 ,

Ξ11 = AX + XAT +
3∑

i=1

Q̃i + Ñ1 + ÑT
1 + L̃1 + L̃T

1 ,

Ξ12 = BY + ÑT
2 − T̃1 + M̃1 − Ẽ1 + L̃T

2 , Ξ13 = Ẽ1 + ÑT
3 + L̃T

3 ,

Ξ14 = − M̃1 + ÑT
4 + L̃T

4 , Ξ15 = T̃1 − Ñ1 + ÑT
5 + ÑT

5 , Ξ16 = ÑT
6 + L̃T

6

Ξ22 = M̃2 + M̃T
2 − T̃2 − T̃ T

2 − Ẽ2 − ẼT
2 , Ξ23 = Ẽ2 + M̃T

3 − T̃ T
3 − ẼT

3 ,

Ξ24 = − M̃2 − L̃2 + M̃T
4 − T̃ T

4 − ẼT
4 , Ξ25 = T̃2 − Ñ2 + M̃T

6 − T̃ T
6 − ẼT

6 ,

Ξ26 = M̃T
6 − T̃ T

6 − ẼT
6 , Ξ33 = −Q̃1 + Ẽ3 + ẼT

3 , Ξ34 = −M̃3 + ẼT
4 − L̃3,

Ξ35 = T̃3 − Ñ3 + ẼT
5 , Ξ36 = ẼT

6 , Ξ44 = −Q̃2 − M̃4 − M̃T
4 , Ξ45 = T̃4 − Ñ4 − M̃T

5 ,

Ξ46 = − M̃T
6 − L̃T

6 , Ξ55 = −(1 − α)Q3 + T̃5 − Ñ5 + T̃ T
5 − ÑT

5 ,

Ξ56 = T̃ T
6 − ÑT

6 , Ξ66 = −γ2I,

AL =
[

AXT BY 0 0 0 Bω

]T
, CL =

[
CXT DY 0 0 0 Bω

]T
,

Ξ3 = diag

{
− 1

αTM

Z̃1 − 1

(1 − α)TM

Z̃1−
1

TM − Tm

(Z̃1 + Z̃2) − 1

TM − Tm

Z̃2 − 1

TM

Z̃3

}
,

B̃ =
[

BT 0 0 0 0 0 0 0 0 0 BT BT BT DT
]T

,

Ỹ =
[

0 Y 0 0 0 0 0 0 0 0 0 0 0 0
]T

,

γ2 = ε1 + ε2 + ε3δ
2
g , γ1 =

1

ε1

δ2
f +

1

ε2

δ2
g +

1

ε3

δ2
f . (17)
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In this case, the state-feedback gain is given by

K = Y X−1.

4. Numerical Example. Consider the following system:

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0.2
0.1

]
u(t) +

[
0.1
0.1

]
ω(t), (18)

z(t) =
[

0.1 0.1
]
x(t). (19)

Choosing the bound of sampling intervals is TM = 1.1s, quantizer parameters are δg = 0.1
and δf = 0.1. By using Theorem 3.2, solving the LMI problem (15), one can obtain
the state feedback controller gain K =

[
−1.5964 −2.4346

]
, and the H∞ disturbance

attenuation level γ = 0.4291. The disturbance signal ω(t) is given as

ω(t) =

{
2 sin 2t, for 5 ≤ t ≤ 15
0, for t < 5 or t > 15

(20)

Figure 2 and Figure 3 show the control input and the state response under the proposed
control scheme, respectively, where the initial state of the system is x0 = [0, 0]T . When the
maximum allowable upper bound of the sampling interval is 1.1s, the quantizer parameters
are δg = 0.1 and δf = 0.1, and the closed-loop system is asymptotically stable with above
obtained control gain. It shows the effectiveness of quantized controller design method
proposed in this work.

Figure 2. The control input of the sampled-data system with two quantizers

5. Conclusions. This paper investigates the problem of quantized H∞ control for a
sampled-data system with information constraints whereby the system is continuous-time
and the controller is discrete-time signal. By using Lyapunov functional approach, the
relation of quantization parameter and H∞ performance index of the systems is explored.
Moreover, the proposed H∞ performance analysis and H∞ controller design conditions
can be presented in terms of linear matrix inequalities (LMIs). A numerical example
demonstrates the effectiveness of the proposed methods. In the future work, the case of
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Figure 3. State response of the sampled-data system with two quantizers

the nonlinear sampled-data systems with quantization and variable sampling will be con-
sidered. We will investigate the control problem for the nonlinear sampled-data systems
with information constraints.
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